導航:首頁 > 貸款資金 > 歐式看漲期權價格k

歐式看漲期權價格k

發布時間:2021-04-25 07:03:53

⑴ 標的股票價格為31,執行價格為30,無風險年利率為10%,三個月期歐式看漲期權價為3,

根據買賣平價公式C(t)+K*exp[-r(T-t)]=P(t)+S(t)
其中其中C為看歐式張期權價格,K是執行價格,P是看內歐式跌期權價格,S是現在的標的資容產價格,r為無風險利率,T為到期日(K按無風險利率折現),兩個期權的執行價和其他規定一樣
當等式成立的時候就是無套利,不等的時候就存在套利機會
如:上式的等號改為「>」號,則可以在 t 時刻買入一份看跌期權,一份標的資產,同時賣出一份看張期權,並借現金(P+S-C),則 t 時刻的盈虧為0
到T時刻的時候,若S>K,則看漲期權被執行,得到現金K,還還本付息(P+S-C)*exp[r(T-t)], 總盈虧為{C+K*exp[-r(T-t)]-P-S}*exp[r(T-t)]>0
若S<K,則執行看跌期權,得到現金K,還本付息(P+S-C)*exp[r(T-t)],也能獲得大於零的收益
所以從總的來看,若平價公式不成立,則存在套利機會
代入數據即可

⑵ 寫出歐式看漲期權和看跌期權平價公式並給出證明

C+Ke^(-rT)=P+S0

平價公式是根據無套利原則推導出來的。

構造兩個投資組合。
1、看漲期權C,行權價K,距離到期時間T。現金賬戶Ke^(-rT),利率r,期權到期時恰好變成K。
2、看跌期權P,行權價K,距離到期時間T。標的物股票,現價S0。

看到期時這兩個投資組合的情況。
1、股價St大於K:投資組合1,行使看漲期權C,花掉現金賬戶K,買入標的物股票,股價為St。投資組合2,放棄行使看跌期權,持有股票,股價為St。
2、股價St小於K:投資組合1,放棄行使看漲期權,持有現金K。投資組合2,行使看跌期權,賣出標的物股票,得到現金K
3、股價等於K:兩個期權都不行權,投資組合1現金K,投資組合2股票價格等於K。

從上面的討論我們可以看到,無論股價如何變化,到期時兩個投資組合的價值一定相等,所以他們的現值也一定相等。根據無套利原則,兩個價值相等的投資組合價格一定相等。所以我們可以得到C+Ke^(-rT)=P+S0。

⑶ 【求解】歐式看漲期權價格 計算題

對於第一問,用股票和無風險貸款來復制。借入B元的無風險利率的貸款,然後購買N單位的股票,使得一年後該組合的價值和期權的價值相等。於是得到方程組:
N*Sup - B*(1+r ) = 5 ; N*Sdown - B*(1+r )= 0。其中Sup、Sdown為上升下降後的股票價格,r為無風險利率8%.於是可以解出N和B,然後N*S - B就是現在期權的價格,S為股票現價。這是根據一價定律,用一個資產組合來完全復制期權的未來現金流,那麼現在該組合的價格就是期權的價格。
對於第二問,思路完全一樣。只是看跌的時候,股票上漲了期權不行權,到期價值為0;股票下跌了期權行權,到期價值為5。也就是把上邊的兩個方程右邊的數交換一下。

希望對你有所幫助。

⑷ 為什麼歐式看漲期權和美式看漲期權價格一樣

美式看漲期權的行權機會多過歐式,
所以美式價格應該大於等於歐式
另一方面,
在任意時間點看漲期權的潛在上升空間總是大於潛在下跌空間(因為標的物的價格沒有上限),
所以看漲期權的時間價值總是正數,
這樣提前執行美式期權就會損失時間價值,
所以美式價格應該小於等於歐式,
因為一旦執行了美式期權,
行權者只能獲得內在價值,
而持有歐式期權的人既有內在價值也有時間價值。
所以結論就是等於。
如果是看跌期權的話就不一樣了。

⑸ 如何證明歐式看漲期權與看跌期權價格的平價關系

假設兩個投資組合
A: 一個看漲期權和一個無風險債券,看漲期權的行權價=X,無風險債券的到期總收益=X
B: 一個看跌期權和一股標的股票,看跌期權的行權價格=X,股票價格為S

投資組合A的價格為:看漲期權價格(C)+無風險債券價格(PV(X))。PV(X)為債券現值。
投資組合B的價格為:看跌期權價格(P)+股票價格S

畫圖或者假設不同的到期情況可以發現,A、B的收益曲線完全相同。根據無套利原理,擁有相同收益曲線的兩個投資組合價格必然相同。所以 C+PV(X)=P+S,變形可得C-P=S-PV(X)

⑹ 什麼是歐式看漲期權和歐式看跌期權

歐式期權是指只有在合約到期日才被允許執行的期權。

看漲期權則是估計這個股票會漲,可以在未來以一定的價格買進。看跌期權是估計估計會跌,可以在未來以一定價格賣出。

期權按照交割時間分為歐式和美式。歐式期權就是到了執行日才可執行的。美式是在最後執行日之前任意一天都可以的。

(6)歐式看漲期權價格k擴展閱讀:

無論是歐式期權還是美式期權只是名稱不同,並無任何地理上的意義。由於美式期權比歐洲式期權具有更大的迴旋餘地,通常更具有價值,所以,近些年來無論在美國或歐洲,美式期權均成為期權的主流,歐式期權雖也存在但交易量卻比美式期權遜色得多。

⑺ 關於歐式看漲期權的一道計算題。求解!

(1)看漲期權定價公式:C=SN(d1)-Kexp[-r(T-t)]Nd(d2)
d1=[ln(S/K)+(r+sigma^2/2)*(T-t)]/(sigma*sqrt(T-t))
d2=d1-sigma*sqrt(T-t)
根據題意,S=30,K=29,r=5%,sigma=25%,T-t=4/12=0.3333
d1=[ln(30/29)+(0.05+0.0625/2)*0.3333]/(0.25*sqrt(0.3333))=0.4225
d2=d1-0.25*sqrt(0.3333)=0.2782
N(d1)=0.6637,N(d2)=0.6096
看漲期權的價格C=30*0.6637-29*0.9835*0.6096=2.5251
(2)看跌期權的定價公式:P=Kexp[-r(T-t)][1-Nd(d2)]-S*[1-N(d1)]
看跌期權的價格P=29*0.9835*0.3904-30*0.3363=1.0467
(3)看漲看跌期權平價關系
C-P=S-Kexp[-r(T-t)]
左邊=2.5251-1.0467=1.4784,右邊=30-29*0.9835=1.4784
驗證表明,平價關系成立。

⑻ 1.試推導出歐式看漲看跌期權的價格平價等式。2.上題中是否存在套利機會,如何套利

1.歐式看漲期權理論價格C=SN(d1)-N(d2)Ke^[-r(T-t)],歐式看跌期權理論價格P=N(-d2)Ke^[-r(T-t)]-SN(-d1),把看漲期權理論價格公式減去看跌期權理論價格公式化簡後可得Call-Put平價公式為P+S=C+Ke^[-r(T-t)]

2.根據平價公式依題意可知,K=45,C=8,P=1,e^-r=1/(1+10%),T-t=3/12=1/4,S=50。
(註:題目中沒有說明無風險利率是否連續,這是按不連續算的e^-r,由於是3個月期,對於T-t是按年化來計算的。)
把相關數值代入平價公式可得1+50<8+45/(1+10%)^(1/4)=51.94,存在套利機會。

應該通過持有該期權標的物和買入看跌期權,並且賣出看漲期權構成一個套利頭寸組合。
3.當股票價格為40元,看跌期權進行行權,獲得5元(45-40)的期權價值,扣除1元購入看跌期權成本,實際獲利4元;標的物股票虧損10元(50-40);賣出的看漲期權,由於標的物股票價格低於執行價格,故此看漲期權是不會行權的,所以賣出的看漲期權獲利為賣出時的期權費8元。綜合上述情況,套利利潤為4-10+8=2元。

⑼ 求如何證明 歐式看漲期權與看跌期權價格的平價關系

假設兩個投資組合
A: 一個看漲期權和一個無風險債券,看漲期權的行權價=X,無風險債券的到期內總收容益=X
B: 一個看跌期權和一股標的股票,看跌期權的行權價格=X,股票價格為S

投資組合A的價格為:看漲期權價格(C)+無風險債券價格(PV(X))。PV(X)為債券現值。
投資組合B的價格為:看跌期權價格(P)+股票價格S

畫圖或者假設不同的到期情況可以發現,A、B的收益曲線完全相同。根據無套利原理,擁有相同收益曲線的兩個投資組合價格必然相同。所以 C+PV(X)=P+S,變形可得C-P=S-PV(X)

閱讀全文

與歐式看漲期權價格k相關的資料

熱點內容
綠地信託 瀏覽:310
深惠信託 瀏覽:816
香港私募基金哪個好 瀏覽:968
信託牌照發放 瀏覽:426
非法信託有 瀏覽:981
政府信託貸款 瀏覽:488
投資公司理財產品 瀏覽:952
廣州金誠無憂融資 瀏覽:779
怎麼貸款好借 瀏覽:5
UTG外匯 瀏覽:167
理財經理是干什麼的 瀏覽:627
銀行理財被騙案件 瀏覽:474
京東月月領理財年金 瀏覽:823
聯匯通寶理財 瀏覽:925
融資的話術 瀏覽:220
融資高山 瀏覽:139
我想理財投資方式 瀏覽:515
100萬投資理財方案 瀏覽:511
最好的投資理財公司 瀏覽:379
理財屋怎麼樣 瀏覽:39