導航:首頁 > 黃金交易 > 適合量化交易

適合量化交易

發布時間:2021-04-16 11:41:50

① 個人能做量化交易

個人來必須要進行量化交易,而且源必須要這么做,
首先要明白量化交易不是自動交易,量化交易也不是技術分析。他只是利用計算機為工具大大提高工作效率的工具而已。
假如你投資股票,你按照技術分析操作,你的操作手法是MACD,那你知道MACD指標在歷史上回測成功率是多少,如果MACD和kdj結合成功率是提高還是下降,如何優化參數組合,等等這些都需要量化分析。你要按基本面分析,那你知道有多少上市公司連續盈利十年嗎。這個量化分析就能完成。
一下是我做的量化趨勢指標截圖

② 做量化交易一般用什麼軟體

需要懂一些數學模型,比如統計分析、人工智慧演算法之類的,他的本質是利用數學專模型分析數據屬潛在的規律尋找交易機會,並利用計算機程序來搜尋交易時機以及完成自動化交易。並沒有現成的軟體可以做這個,因為它需要一個搭建一個專業的平台,這不是一個人可以完成的。

國內有一些軟體,比如大智慧提供數量分析,還有一些軟體提供股票、期貨的程序化交易。但是實際上這並不是真正意義上的量化交易。事實上,做一款純粹的適合個人投資者的量化投資軟體,難度是非常大的,因為量化策略並不想傳統的基本面、技術面那樣存在已有既定的必然規律。他需要跨越多學科,多領域去挖掘數據的規律,然後利用得出的規律進行交易。但是不同時間、空間的數據的潛在規律並不一致,所以對量化過程進行標准化是一件很難完成的事情。

如果是計算機或者數學專業的人士,可以考慮使用C、C++、SQL等語言,其他的可以使用MATLAB/SAS 等軟體。不管是哪一種軟體,要實現量化交易,肯定是需要一定的建模基礎和編程基礎的,其中最重要的東西是數學能力。

③ 量化交易主要有哪些好的策略

研究量化投資模型的目的是找出那些具體盈利確定性的時空價格形態,其最重要手段的概率取勝,最重要的技術是概率統計,最主要的研究方向是市場行為心理。那麼我們在選擇用於研究的參數時,也應該用我們的經驗來確定是否把某技術參數放進去,因為一般來說定性投資比較好用的參數指標對量化投資同樣適用。
量化投資區別於傳統定性投資的主要特徵在於模型。我打個比方,我們看病,中醫與西醫的診療方法是不同,中醫是望、聞、問、切,最後判斷出的結果,很大程度上基於中醫的經驗,主觀定性程度大一些;西醫就不同了,先要病人去拍片子、化驗等,這些都要依託於醫學儀器,最後得出結論,對症下葯。中醫對醫生的經驗要求非常高,他們的主觀判斷往往決定了治療效果,而西醫則要從容得多,按事先規定好的程序走就行了。量化投資就是股票投資中的西醫,它可以比較有效地矯正理智與情緒的不兼容現象。
量化投資的一般思路:選定某些技術指標(我們稱之為參數,往往幾個組成一組),並將每一個參數的數據范圍進行分割,成幾等份。然後,用計算機編程寫出一段能對這些參數組對股票價格造成的影響進行數據統計的程序,連接至大型資料庫進行統計計算,自動選擇能夠達到較高收益水平的參數組合。但是選出這些參數組後還不能馬上應用,因為這里涉及到一個概率陷阱的問題,比如說,有1到100這一百個數字放在那裡,現在讓你選擇,請問你選到100的可能性是多大?是的,就是1/100,如果較幸運你選到了100並不能說明你比別人聰明,而是概率的必然。所以,在進行統計時要特別關注統計的頻率與選出的結果組數量之間的關系。在選出符合要求的參數組後我們還應留出至少三年的原始市場數據進行驗證,只有驗證合格後才能試用。
量化投資原始數據策略:我們選用96年後的市場數據,因為96年股市有過一次交易政策改革(你可以自己查詢了解一下),為了不影響研究結果我們不採納96年以前的數據進資料庫。
量化投資研究的硬設備:高計算性能電腦,家用電腦也可以,不過運算時間會很長,我曾經用家用電腦計算了三個月時間才得到想要的數據。
統計方法:可以選用遺傳演算法,但我在這里陪大家做的是比較簡單的模型,所以採用普通統計方法就可以了。
用於量化研究的軟體:我採用的是免費的大型資料庫mysql,asp網路編程語言,以及可以設置成網路伺服器的旗艦版win7操作系統。

④ 什麼是量化交易,未來前景如何知道的講講。

量化交易,有時候也稱自動化交易,是指以先進的數學模型替代人為的主觀判斷,避免在專市場極屬度狂熱或悲觀的情況下做出非理性的投資決策。
在股票市場上,量化交易早不是什麼新聞,在國外,七成的交易都是通過計算機決策的,在國內這個數字也接近五成。
過去的股票市場都是靠交易員手動敲鍵盤來操作的,難免一失手成千古恨,這種行為被戲稱為「胖手指」,相比之下,量化交易則如同點石成金的「仙人指」。量化里最美的童話就是「旱澇保收」,牛市也好,熊市也罷,都能大賺特賺。
量化交易的優勢:1. 嚴格的紀律性 2. 完備的系統性 3. 妥善運用套利的思想 4. 靠概率取勝
量化交易的風險性:首先是一二級市場「級差」風險,其次是交易員操作風險,最後是系統軟體的風險。
滿意請採納答案,有不明白的可以繼續提問。

⑤ 普通人可以用的量化交易軟體有哪些啊如何來選擇更好些呢求推薦

量化交易是比較復雜的東西,不是有量就叫量化,要建立模型,涉及的因素很多。先從基礎的了解吧,也不要迷信哪種方法高端。

⑥ 目前市面上的量化交易系統哪個比較好用的人多

目前市面上的量化交易系統,我覺得大智慧這個交易系統比較好
用的人也很多。

⑦ 量化交易真的有那麼好嗎

挺好的,可以幫助解套,增加收益,操作也不是很簡單,很適合一些沒有時間或者專業能力不強的客戶,能幫助客戶獲得較高的收益

⑧ 普通人可以用的量化交易軟體各位用過沒哪個比較好啊

終於找到適合自己的炒股工具了。

⑨ 好用的量化交易系統,求推薦

好用的量化交易系統,就是能賺錢的系統唄,既然是個能賺錢的系統,誰會去告訴別人呢。
難道你會賣了搖錢樹換錢花嗎。

⑩ 量化交易有什麼類型

閃牛分析:
概念
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

特點
定量投資和傳統的定性投資本質上來說是相同的,二者都是基於市場非有效或弱有效的理論基礎。兩者的區別在於定量投資管理是「定性思想的量化應用」,更加強調數據。量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
應用編輯
量化投資技術包括多種具體方法,在投資品種選擇、投資時機選擇、股指期貨套利、商品期貨套利、統計套利和演算法交易等領域得到廣泛應用。在此,以統計套利和演算法交易為例進行闡述。
1、統計套利
統計套利是利用資產價格的歷史統計規律進行的套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。
統計套利的主要思路是先找出相關性最好的若干對投資品種,再找出每一對投資品種的長期均衡關系(協整關系),當某一對品種的價差(協整方程的殘差)偏離到一定程度時開始建倉,買進被相對低估的品種、賣空被相對高估的品種,等價差回歸均衡後獲利了結。股指期貨對沖是統計套利較長採用的一種操作策略,即利用不同國家、地區或行業的指數相關性,同時買入、賣出一對指數期貨進行交易。在經濟全球化條件下,各個國家、地區和行業股票指數的關聯性越來越強,從而容易導致股指系統性風險的產生,因此,對指數間的統計套利進行對沖是一種低風險、高收益的交易方式。
2、演算法交易。
演算法交易又稱自動交易、黑盒交易或機器交易,是指通過設計演算法,利用計算機程序發出交易指令的方法。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格,甚至包括最後需要成交的資產數量。
演算法交易的主要類型有: (1) 被動型演算法交易,也稱結構型演算法交易。該交易演算法除利用歷史數據估計交易模型的關鍵參數外,不會根據市場的狀況主動選擇交易時機和交易的數量,而是按照一個既定的交易方針進行交易。該策略的的核心是減少滑價(目標價與實際成交均價的差)。被動型演算法交易最成熟,使用也最為廣泛,如在國際市場上使用最多的成交加權平均價格(VWAP)、時間加權平均價格(TWAP)等都屬於被動型演算法交易。 (2) 主動型演算法交易,也稱機會型演算法交易。這類交易演算法根據市場的狀況作出實時的決策,判斷是否交易、交易的數量、交易的價格等。主動型交易演算法除了努力減少滑價以外,把關注的重點逐漸轉向了價格趨勢預測上。 (3) 綜合型演算法交易,該交易是前兩者的結合。這類演算法常見的方式是先把交易指令拆開,分布到若干個時間段內,每個時間段內具體如何交易由主動型交易演算法進行判斷。兩者結合可達到單純一種演算法無法達到的效果。
演算法交易的交易策略有三:一是降低交易費用。大單指令通常被拆分為若干個小單指令漸次進入市場。這個策略的成功程度可以通過比較同一時期的平均購買價格與成交量加權平均價來衡量。二是套利。典型的套利策略通常包含三四個金融資產,如根據外匯市場利率平價理論,國內債券的價格、以外幣標價的債券價格、匯率現貨及匯率遠期合約價格之間將產生一定的關聯,如果市場價格與該理論隱含的價格偏差較大,且超過其交易成本,則可以用四筆交易來確保無風險利潤。股指期貨的期限套利也可以用演算法交易來完成。三是做市。做市包括在當前市場價格之上掛一個限價賣單或在當前價格之下掛一個限價買單,以便從買賣差價中獲利。此外,還有更復雜的策略,如「基準點「演算法被交易員用來模擬指數收益,而」嗅探器「演算法被用來發現最動盪或最不穩定的市場。任何類型的模式識別或者預測模型都能用來啟動演算法交易。

潛在風險
量化交易一般會經過海量數據模擬測試和模擬操作等手段進行檢驗,並依據一定的風險管理演算法進行倉位和資金配置,實現風險最小化和收益最大化,但往往也會存在一定的潛在風險,具體包括:
1、歷史數據的完整性。行情數據不完整可能導致模型與行情數據不匹配。行情數據自身風格轉換,也可能導致模型失敗,如交易流動性,價格波動幅度,價格波動頻率等,而這一點是目前量化交易難以克服的。
2、模型設計中沒有考慮倉位和資金配置,沒有安全的風險評估和預防措施,可能導致資金、倉位和模型的不匹配,而發生爆倉現象。
3、網路中斷,硬體故障也可能對量化交易產生影響。
4、同質模型產生競爭交易現象導致的風險。
5、單一投資品種導致的不可預測風險。
為規避或減小量化交易存在的潛在風險,可採取的策略有:保證歷史數據的完整性;在線調整模型參數;在線選擇模型類型;風險在線監測和規避等。

閱讀全文

與適合量化交易相關的資料

熱點內容
期貨長線百分之十的倉位輕倉 瀏覽:606
投管投資官網 瀏覽:909
工行股票市值 瀏覽:649
期貨高開幾十個點 瀏覽:115
無抵押個人網上貸款 瀏覽:324
期貨漲10個點是多少錢 瀏覽:613
1063股票 瀏覽:767
丹華資本投資公告 瀏覽:782
銀行工作讓我買基金 瀏覽:539
蘭格網北京廢鋼筋價格 瀏覽:633
2019年4月最新貸款基準利率 瀏覽:872
獅橋融資租賃總公司 瀏覽:819
伊朗的外匯管制 瀏覽:794
紅棗主力期貨 瀏覽:404
股票平權 瀏覽:544
紅棗期貨的紅棗規格 瀏覽:65
信託收稅嗎 瀏覽:58
民融資租賃 瀏覽:716
投資2萬億美元 瀏覽:409
長信基金總經理 瀏覽:753