導航:首頁 > 黃金交易 > 中心趨勢指標

中心趨勢指標

發布時間:2021-05-21 14:16:05

① 在數據分析中經常使用的描述中心趨勢的數值有哪幾個

描述中心趨勢的一般有平均數,中位數,眾數。

② 集中趨勢指標的名詞解釋

在一個價格運動當中,如果其包含的波峰和波谷都相應的高於前一個波峰和波谷,那麼就稱為上漲趨勢;
相反的,如果其包含的波峰和波谷都低於前一個波峰和波谷,那麼就稱為下跌趨勢;
如果後面的波峰與波谷都基本與前面的波峰和波谷持平的話,那麼成為振盪趨勢,或者橫盤趨勢,或者無趨勢。

③ 描述集中趨勢的指標有哪些

集中趨勢的統計指標包括算術均數,幾何均數,中位數,算術均數算術均數適用於對稱分布特別是正態分布的資料,幾何均數適用於可經對數轉換為對稱分布的資料,中位數適用於各種分步資料常用於偏峰資料

④ 數據集中趨勢度量的指標有哪幾個

眾數(mode)是一個比其他數出現次數都要多的數值。對於羞怯感的測量值來說,突然殺人犯的眾數反應是yes——10個人中有8個報告說自己是容易感到害羞的。而在慣犯當中,眾數反應是no。在突然的謀殺犯中,性別角色得分的眾數為+5。你能夠計算出他們的自我過度控制分數的眾數嗎?眾數是最容易得出的集中趨勢的指標,但常常又是用處最小的如果你能夠注意到過控得分中只有一個分數高於眾數17但卻有6個分數低於它這一情況的話,你就可能體會出眾數用處很小的一個原因了。盡管17是頻次最高的一個得分,但卻不符合我們關於「代表性」或「集中趨勢」的概念。

中數(median)更明顯的也是一個代表集中趨勢的度量;它將一組數據中高分的一半與低分的另一半區分開來。高出中數分數的數量與低於它分數的數量相等。當分數的個數為奇數時,中數是位於數據分布中間的那個分數;當分數的個數為偶數時,研究者常常以最中間的兩個分數的平均值作為中數;例如,如果將殺人慣犯的性別角色得分按照高低順序排列在單獨的一張紙上,可以看出中數是一10,分別有四個分數高於和低於這一數值。在突然的殺人犯中,中數是+5——第五和第六個分數的平均值,這兩個分數恰巧都是+5。中數不受極值的影響、例如,即使突然殺人犯中最高的性別角色得分是+129而不是這里的+61.中數將仍然是+5。這個分數仍然會把數據中高分的一半和低分的一半區分開來。中數始終處在數據分布的之間位置。

平均數(mean)是多數人聽到平均這個詞時常常會想到的。它同時還是最常用到的描述一組數據的統計量。要計算平均數的話,我們需要把所有數據加在一起,然後再除以這些數據的個數。這一操作可以用下面這個公式來表示:M=(ΣX)/N

⑤ 集中趨勢指標的特點

集中趨勢測度就是尋找數據水平的代表值或中心值,低層數據的集中趨勢測度值適用於高層次的測量數據,能夠揭示總體中眾多個觀察值所圍繞與集中的中心,反之,高層次數據的集中趨勢測度值並不適用於低層次的測量數據。

⑥ 常用的趨勢指標有哪些

趨勢指標有很多種:
1、MACD稱為指數平滑異同移動平均線,是從雙移動平均線發展而來的,由快的移動平均線減去慢的移動平均線,MACD的意義和雙移動平均線基本相同,但閱讀起來更方便。當MACD以大角度變化,表示快的移動平均線和慢的移動平均線的差距非常迅速的拉開,代表了一個市場大趨勢的轉變。當MACD從負數轉向正數,是買的信號。當MACD從正數轉向負數,是賣的信號。
2、DMI指標是通過分析股票價格在漲跌過程中買賣雙方力量均衡點的變化情況,即多空雙方的力量的變化受價格波動的影響而發生由均衡到失衡的循環過程,從而提供對趨勢判斷依據的一種技術指標。
基本原理:在於尋找股票價格漲跌過程中,股價藉以創新高價或新低價的功能,研判多空力量,進而尋求買賣雙方的均衡點及股價在雙方互動下波動的循環過程。
3、DMA指標又叫平行線差指標,是目前股市分析技術指標中的一種中短期指標,它常用於大盤指數和個股的研判。
基本原理:屬於趨向類指標,也是一種趨勢分析指標。DMA是依據快慢兩條移動平均線的差值情況來分析價格趨勢的一種技術分析指標。它主要通過計算兩條基準周期不同的移動平均線的差值,來判斷當前買入賣出的能量的大小和未來價格走勢的趨勢。
4、 EXPMA指標簡稱EMA,指數平均數指標或指數平滑移動平均線,是一種中線趨向類指標,不適合做短線分析。除了牛皮市,EXPMA的趨勢性一般很明確。
從統計學的觀點來看,只有把移動平均線(MA)繪制在價格時間跨度的中點,才能夠正確地反映價格的運動趨勢,但這會使信號在時間上滯後,而EXPMA指標是對移動平均線的彌補。EXPMA指標由於其計算公式中著重考慮了價格當天(當期)行情的權重,因此在使用中可克服MACD等其他指標信號對於價格走勢的滯後性,同時也在一定程度中消除了DMA指標在某些時候,對於價格走勢所產生的信號提前性,是一個非常有效的分析指標。
5、TRIX指三重指數平滑移動平均線
屬於長線指標。它過濾掉許多不必要的波動來反映股價的長期波動趨勢。TRIX這個指標把均線的數值再一次地算出平均數,並在此基礎上算出第三重的平均數。較為有效地避免頻繁出現交叉信號。
6、布林線指標,即BOLL指標,是用該指標的創立人約翰·布林格(John Bollinger)的姓來命名的,是研判股價運動趨勢的一種中長期技術分析工具。
其利用統計原理,求出股價的標准差及其信賴區間,從而確定股價的波動范圍及未來走勢,利用波帶顯示股價的安全高低價位,因而也被稱為布林帶。其上下限范圍不固定,隨股價的滾動而變化。和麥克指標MIKE一樣同屬路徑指標,股價波動在上限和下限的區間之內,這條帶狀區的寬窄,隨著股價波動幅度的大小而變化,股價加大時,帶狀區變寬,狹小盤整時,帶狀區則變窄。
7、麥克指標又叫MIKE指標,其英文全稱是「Mike Base」,是一種專門研究股價各種壓力和支撐的中長期技術分析工具。
該指標是一種隨股價波動幅度大小而變動的壓力支撐指標,股價上方的壓力稱為「上限」,股價下方的支撐稱為「下限」。第一條「上限」和第一條「下限」之間,我們設一條假想的中界線,股價位於中界線的上方時,參考「上限」壓力值;股價位於中界線下方面,則參考「下限」支撐值

⑦ 如何對任意兩個總體集中趨勢指標的代表性進行比較

集中趨勢指標——平均數包括靜態平均數和動態平均數兩種。
(版一)靜態平均數
靜權態平均數是根據分布數列計算而得到的一種平均數,它主要是從靜態上說明總體各單位標志值的一般水平。本章的集中趨勢指標就是指靜態平均數。
靜態平均數根據其處理的方法不同又可以分為數值平均數和位置平均數:
★數值平均數
數值平均數是一種根據分布數列的全部標志值計算而得到的平均數,主要包括算術平均數、調和平均數、幾何平均數三種;
★位置平均數
位置平均數是一種根據標志值在分布數列中所處的特殊位置計算得到的平均數。主要包括眾數和中位數兩種。另外,還有分位數,分位數也是位置平均數。
(二)動態平均數
動態平均數則是根據時間序列計算而得到的一種平均數,它主要是從時間變化的動態上說明一段時期內現象發展的一般水平,它的具體計算將在第九章進行詳細闡述。

⑧ 計量資料中常用的集中趨勢指標及適用條件各是什麼

描述集中趨勢的常用指標有算術平均值、幾何平均值和中位數。

算術平均值,簡稱平均值,反映一組觀測值在數量上的平均水平,適用於對稱分布,尤其是正態分布數據。

幾何平均數,用g表示,也稱為多重平均數,反映了變數值平均增減的倍數。適用於軸測數據和對數正態分布數據。

中位數,以m表示,是一組觀測按大小排列後中間的觀測值。它可以用於任何分布類型的數據,但主要用於傾斜分布數據、未知分布數據或開放數據。

(8)中心趨勢指標擴展閱讀:

集中趨勢指標計算方法:

從總體各單位變數值中抽象出具有一般水平的量,這個量不是各個單位的具體變數值,但又要反映總體各單位的一般水平,這種平均數稱為數值平均數。

數值平均數有算術平均數、調和平均數、幾何平均數等形式。

算術平均數:算術平均數就是觀察值的總和除以觀察值個數的商,是集中趨勢測定中最重要的一種,它是所有平均數中應用最廣泛的平均數。算術平均數分為簡單算術平均數和加權算術平均數。

算術平均數=總體標志總量(變數值總量)/總體單位總量(變數值個數)

調和平均數:調和平均數可以看成是變數χ的倒數的算術平均數的倒數,故有時也被稱為「倒數平均數」。調和平均數分為簡單調和平均數和加權調和平均數。

幾何平均數:幾何平均數也稱幾何均值,是n個變數值乘積的n次方根。根據統計資料的不同,幾何平均數也有簡單幾何平均數和加權幾何平均數之分。

⑨ 描述數據集中趨勢和離散程度的指標分別有哪些各自的適用情況是什麼

集中趨勢指標:算術均數,幾何均數,中位數和百分位數。

集中趨勢適用情況:對稱分布或偏度不大的資料,尤其適合正態分布資料。

離散趨勢指標:極差,方差,標准差,四分位數間距。

離散趨勢適用情況:均數相差不大,單位相同的資料。

在統計學中,集中趨勢或中央趨勢,在口語上也經常被稱為平均,表示一個機率分布的中間值。最常見的幾種集中趨勢包括算數平均數、中位數及眾數。集中趨勢可以由有限的數組中或理論上的機率分配中求得。

計量資料的頻數分布有集中趨勢和離散趨勢兩個主要特徵。僅僅用集中趨勢來描述數據的分布特徵是不夠的,只有把兩者結合起來,才能全面地認識事物。我們經常會碰到平均數相同的兩組數據其離散程度可以是不同的。

(9)中心趨勢指標擴展閱讀:

各指標計算方法:

極差又稱全距,是指一組數據的觀察值中的最大值和最小值之差。

極差的計算較簡單,但是它只考慮了數據中的最大值和最小值,而忽略了全部觀察值之間的差異。兩組數據的最大值和最小值可能相同,於是它們的極差相等,但是離散的程度可能相當不一致。

平均差是指一組數據中的各數據對平均數的離差絕對值的平均數。一組數據中的各數據對平均數的離差有正有負,其和為零,因此平均差必須用離差的絕對值來計算。平

平均差用絕對值來度量,雖然避免了正負離差的相互抵消,但不便於運算。一般情況下,可用方差來度量一組數據的離散性。方差通常用字母σ2來表示。

算術平均數:算術平均數就是觀察值的總和除以觀察值個數的商,是集中趨勢測定中最重要的一種,它是所有平均數中應用最廣泛的平均數。算術平均數分為簡單算術平均數和加權算術平均數。

調和平均數:調和平均數可以看成是變數χ的倒數的算術平均數的倒數,故有時也被稱為「倒數平均數」。調和平均數分為簡單調和平均數和加權調和平均數。

閱讀全文

與中心趨勢指標相關的資料

熱點內容
股票為什麼要每日做t 瀏覽:987
鋅價格西藏礦業 瀏覽:504
揚州股票開戶 瀏覽:437
智鑫葯業股票 瀏覽:52
九泰基金中證基金 瀏覽:385
身份證掉了怎麼貸款啊 瀏覽:458
黃金分割外匯 瀏覽:603
申銀萬國期貨能化研究院 瀏覽:16
哪家銀行理財產品收益高 瀏覽:16
國際黃金漲跌幅度限制 瀏覽:217
博時絲路主題股票行基金今日漲幅 瀏覽:590
2018年期貨分類監管 瀏覽:351
水泥相關股票 瀏覽:717
人人貸we理財怎麼投資 瀏覽:826
大豆期貨交易所哪家好 瀏覽:509
1400港幣換人民幣多少 瀏覽:432
五千新台幣多少人民幣 瀏覽:530
拾貝理財怎麼樣 瀏覽:969
農行玫瑰花貴金屬圖片 瀏覽:800
各省小微企業貸款比 瀏覽:142