我建议先分析行情,在想办法去做
② 量化选股策略是什么多因子模型是什么
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为,研究表明,板块、行业轮动在机构投资者的交易中最为获利的盈利模式是基于行业层面进行周期性和防御性的轮动配置,这也是机构投资者最普遍采用的策略。此外,周期性股票在扩张性货币政策时期表现较好,而在紧缩环境下则支持非周期性行业。行业收益差在扩张性政策和紧缩性政策下具有显著的差异。
多因子模型是应用最广泛的一种选股模型,基本原理是采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发挥作用。
③ 什么是量化投资
你好,量化投资,简单地说就是利用数学、统计学、信息技术的量化投资方法来管理投资组合。
④ 量化投资有哪些优势
量化投资就是借助现代统计学、数学的方法,从海量历史数据中寻找能够带来超额收益的多种“大概率”策略,并纪律严明地按照这些策略所构建的数量化模型来指导投资,力求取得稳定的、可持续的、高于平均的超额回报。量化投资属主动投资范畴,本质是定性投资的数量化实践,理论基础均为市场的非有效性或弱有效性。
量化投资特点:
第一,投资视角更广。借助计算机高效、准确地处理海量信息,在全市场寻找更广泛的投资机会。
第二,投资纪律性更强。严格执行数量化投资模型所给出的投资建议,克服人性的弱点。
第三,对历史数据依赖性强。
量化投资策略有如下五大方面的优势,最大的优势就是风险管理更加精准,能够提供超额的收益,主要包括纪律性、系统性、及时性、准确性、分散化等。
(1)纪律性:严格执行量化投资模型所给出的投资建议,而不是随着投资者情绪的变化而随意更改。纪律性的好处很多,可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差,行为金融理论在这方面有许多论述。
(2)系统性:量化投资的系统性特征主要包括多层次的量化模型、多角度的观察及海量数据的观察等等。多层次模型主要包括大类资产配置模型、行业选择模型、精选个股模型等等。多角度观察主要包括对宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度的分析。
(3)及时性:及时快速地跟踪市场变化,不断发现能够提供超额收益的新的统计模型,寻找新的交易机会。
(4)准确性:准确客观评价交易机会,克服主观情绪偏差,妥善运用套利的思想。量化投资正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。与定性投资经理不同,量化投资经理大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。
(5)分散化:在控制风险的条件下,充当准确实现分散化投资目标的工具。分散化也可以说量化投资是靠概率取胜。这表现为两个方面,一是量化投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用,这些历史规律都是有较大概率获胜的策略。二是依靠筛选出股票组合来取胜,而不是一个或几个股票取胜,从投资组合理念来看也是捕获大概率获胜的股票,而不是押宝到单个股票上。
⑤ 量化投资的主要方法和前沿进展
量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。
⑥ 哪位推荐一个能够做量化投资的软件吗
量化炒股的话关注(名Z)是用数据分析实际数据展现市场情况的,数据选股、风控,计算机来的比较真实,还有7年日内交易的研发经验,对于做差价特别实用
⑦ 最近经常听人提起量化对冲,请问量化投资受热捧的原因是什么
量化投资受热捧主要有几个原因:
一、 量化投资产品是一种风险较低同时收益可观的理财产品。长期来看,年化15%-20%的收益率是可以持续的,而量化投资的最大风险一般在10%-15%左右。量化投资是一种可以长期持续稳定的盈利模式,而这种盈利能力的关键在于量化模型的好坏。可以说量化投资更接近科学的领域而不是金融的领域,量化投资的专家基本都是数理和计算机专业毕业,他们的专长是数理分析和数学建模。
二、 量化投资与股票市场的相关性很低,量化产品可以做到不论牛市、熊市、震荡市都赚钱。传统的阳光私募,一般只能跟随市场的节奏,牛市赚钱,熊市亏钱,震荡市看择时的运气如何。而量化对冲产品则把市场波动全部利用股指期货的空头对冲了。是一种不主动选择入场时间的永远满仓的投资方法。
一般来说,量化对冲策略在熊市和震荡市比较容易赚钱,而大牛市有可能跑不赢指数。也就是说投资量化对冲是一种放弃了部分牛市收益去换取熊市和震荡市也能赚钱的策略。所以量化对冲产品更接近固定收益的信托产品,是一种类固定收益产品,非常适合风险厌恶者和机构投资者。
三、 房地产神话和刚性兑付的打破。在中国房地产自2013年进入大拐点后,不论是买房投资还是房地产信托都不再受投资者的热捧。10万亿房地产信托资金最少有一半要撤出来,而纵观所有投资市场,只有二级市场有这个容量能够容纳这么多资金,不然这笔资金流到哪里都会带来问题,而买惯了房地产信托的投资者是无法接受二级市场的波动性的,所以量化对冲产品成立最佳的承接这笔资金的投资产品。相比之下银行固定收益理财产品虽然收益稳定,但是在降息周期中收益率是远远落后于量化对冲产品,年化收益大概4%-6%之间,还跑不赢通胀。
四、 机构投资大量涌现。2014年出现了大量的机构投资者,尤其表现在FOF(组合基金)上。银行系中,光大银行2014年7月份成立了第一只银行系的组合基金(MOM)产品。目前招商银行和工商银行也在大力推动FOF业务发展。机构投资者代表最成熟和最理性的投资者,这部分投资者目前主要的资产配置还是以量化对冲的产品为主,机构投资者为量化对冲基金提供了大量稳定的资金,为量化对冲基金发展提供了良好的温床。
⑧ 中国现在量化投资靠谱吗
我本身做美来国股市的,对国内源市场只能是比较了解。美国那边确实有华人在做中国国内市场的量化投资。这些人都比较低调,比如在经贸大厦租个办公室什么的,但是并不谈论自己在做什么。我也认识几位在广州做了四五年的朋友。
单纯的量化投资是可行的,都是看期望和概率,影响因子很多。主要在CTA用,当然模型会复杂些,工具也多些(比如说考察两个index的spread,跨区等等)。这种相对低频的量化投资可以移植到中国二级市场上。很多人误以为大量的内幕交易和市场操纵会阻碍量化投资,其实不然。量化投资最大的敌人是市场有效,最怕完全效率市场。只要交易所披露信息及时,而市场总有人在交易,有人性在,那么量化投资就是可以做的。另外,基于量化指标的回测统计方法在中国远没有得到广泛使用,大多数投资者采用跟风投资或K线图形的策略。也正因为很少有人用这种方法买卖股票,这种方法在中国显得真正非常高效,做到了高收益低风险。据我所知,国内京东金融在今年也开始做了,另外实盈机构、爱猫爪APP的量化策略也非常领先。
最后,我认为风靡英美的高频交易在中国目前还不大行,因为手续费太高。