导航:首页 > 集团股份 > 石英股份提纯技术如何

石英股份提纯技术如何

发布时间:2021-04-13 16:34:47

『壹』 如何提纯黄金

混汞黄金提纯法。这是一种古老的黄金提纯方法,只要有耐心,可以提到很高的纯度,具体方法如下:

  1. 汞齐化:黄金+汞+水;不断研磨,直到无黄金颗粒为止,黄金与汞生成金属间化物。

  2. 加硫:将硫磺粉与已汞齐化的金研磨混合。

  3. 空气中加热培烧:此时,多余的汞挥发,贱金属首先生成金属硫化物,后期生成金属氧化物

  4. 多次重复以上操作

  5. 加硼砂熔化成金锭:贱金属氧化物与硼砂反应生成低熔点物质,浮于液体上层,纯金在底部。

采用此方法要防止汞蒸汽中毒。

古代因为没有硝酸硫酸等化学药品,只能采用以上方法,现在我们可以将以上方法改进:

  1. 充分汞齐化

  2. 多次加硝酸去杂

  3. 熔化

  4. 黄金纯度处决于汞齐化的充分度和硝酸去杂的彻底度,如果处理得好。黄金纯度可达99%以上。

本方法适合用汞捕收的粗颗粒金的处理。

(1)石英股份提纯技术如何扩展阅读:

黄金(Gold)是化学元素金(化学元素符号Au)的单质形式,是一种软的,金黄色的,抗腐蚀的贵金属。金是较稀有、较珍贵和极被人看重的金属之一。国际上一般黄金都是以盎司为单位,中国古代是以“两”作为黄金单位,是一种非常重要的金属。不仅是用于储备和投资的特殊通货,同时又是首饰业、电子业、现代通讯、航天航空业等部门的重要材料。

黄金的化学符号为Au,金融上的英文代码是XAU或者是GOLD。Au的名称来自一个罗马神话中的黎明女神欧若拉(Aurora )的一个故事,意为闪耀的黎明。

国际金价进入2015年后大幅飙升,纽约市场金价从每盎司1200美元一路上行,不到一个月已升至1300美元关口;统计显示,纽约市场黄金期货价格2015年来已累计上涨9.3%。

『贰』 提纯技术有几种原理

分离提纯一般应遵循“四原则”和“三必须”
(1)“四原则”:一不增(提纯过程中不增加新的杂质);二不减(不减少被提纯的物质);三易分离(被提纯物质与杂质容易分离);四易复原(被提纯物质要易复原)。
(2)“三必须”:一、除杂试剂必须过量;二、过量试剂必须除尽(因为过量试剂带入新的杂质);三、选最佳除杂途径。

分离提纯的常用物理方法
方法 适用范围
过滤 不溶性固体和液体
蒸发 溶解度随温度变化较小的固体和溶液
重结晶 溶解度随温度变化较大的固体和溶解度随温度变化较小的固体
萃取和分液 (1)萃取:利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质
从它与另一种溶剂组成的溶液里提取出来
(2)分液:两种液体互不相溶且易分层
蒸馏和分馏 沸点相差较大的液体混合物
升华 某种组分易升华的混合物,利用物质升华的性质在加热条件下分离的方法

分离提纯的常用化学方法
(1)加热法
混合物中混有热稳定性差的物质时,可直接加热,使热稳定性差的物质分解而分离出去。例如:食盐中混有氯化铵,纯碱中混有小苏打等均可直接加热除去杂质。
(2)沉淀法
在混合物中加入某试剂,使其中一种以沉淀形式分离出去的方法。使用该方法一定要注意不能引入新的杂质。若使用多种试剂将溶液中不同微粒逐步沉淀时,应注意后加试剂能将前面所加试剂的过量部分除去,最后加的试剂不引入新的杂质。例如,加适量BaCl2溶液可除去NaCl中混有的Na2SO4。
(3)转化法
不能通过一次反应达到分离的目的时,要经过转化为其他物质才能分离,然后要将转化物质恢复为原物质。例如:分离Fe3+和Al3+时,可加入过量的NaOH溶液,生成Fe(OH)3和NaAlO2,过滤后,分别再加盐酸重新生成Fe3+和Al3+。注意转化过程中尽量减少被分离物质的损失,而且转化物质要易恢复为原物质。
(4)酸碱法
被提纯物质不与酸碱反应,而杂质可与酸碱发生反应,用酸碱作除杂试剂。例如:用盐酸除去SiO2中的石灰石,用氢氧化钠溶液除去铁粉中的铝粉等。
(5)氧化还原法
①对混合物中混有的还原性杂质,可加入适当的氧化剂使其被氧化为被提纯物质。例如:将氯水滴入混有FeCl2的FeCl3溶液中,除去FeCl2杂质。
②对混合物中混有的氧化性杂质,可加入适当还原剂将其还原为被提纯物质。例如:将过量铁粉加入混有FeCl3的FeCl2溶液中,振荡过滤,可除去FeCl3杂质。
(6)调节pH法
通过加入试剂来调节溶液的pH,使溶液中某组分沉淀而分离的方法。一般加入相应的难溶或微溶物来调节。
例如:在CaCl2溶液中含有FeCl3杂质,由于三氯化铁的水解,溶液是酸性溶液,就可采用调节溶液pH的办法将Fe3+沉淀出去,为此,可向溶液中加氧化钙或氢氧化钙或碳酸钙等。
(7)电解法
此法利用电解原理来分离、提纯物质,如电解精炼铜,将粗铜作阳极,精铜作阴极,电解液为含铜离子的溶液,通直流电,粗铜及比铜活泼的杂质金属失电子,在阴极只有铜离子得电子析出,从而提纯了铜。

分离提纯方法的选择
(1)“固+固”混合物的分离(提纯)
加热 升华法例如:NaCl和I2的分离
分解法例如:除去Na2CO3中混有的NaHCO3 固体
氧化法例如:除去氧化铜中混有的铜
加水 结晶法(互溶)例如:KNO3和NaCl的分离
过滤法(不互溶)例如:粗盐提纯
其他——特殊法例如:FeS和Fe的分离可用磁铁吸附分离
(2)“固+液”混合物的分离(提纯)
互溶 萃取法例如:海带中碘元素的分离
蒸发 例如:从食盐水中制得食盐
蒸馏法例如:用自来水制蒸馏水
不互溶——过滤法例如:将NaCl晶体从其饱和溶液中分离出来
(3)“液+液”混合物的分离(提纯)
互溶 蒸馏法例如:酒精和水、苯和硝基苯、汽油和煤油等的分离
不互溶分液法例如:CCl4和水的分离
(4)“气+气”混合物的分离(提纯)
洗气法例如:除去Cl2中的HCl,可通过盛有饱和食盐水的洗气瓶
其他法例如:除去CO2中的CO,可通过灼热的CuO
(5)含杂质的胶体溶液的分离(提纯)
渗析法:用半透膜除去胶体中混有的分子、离子等杂质。

『叁』 重晶石的提纯技术

随着优质、单一型重晶石矿日益枯竭,我国目前绝大部分重晶石矿品位低,与其他金属矿、非金属矿紧密伴生,直接影响其在工业上的利用价值。作钻井泥浆用的重晶石加重剂一般细度要求达到-0.056mm以上,密度>4.2g/cm,品位>95%,可溶性盐类含量98%,CaO含量<0.36%,且不许含有氧化镁、铅等有害成分。不同用途的重晶石对重晶石的纯度、白度、杂质含量的要求不同。1.1物理提纯重晶石的物理提纯方法主要有:手选、重选、磁选。手选的主要依据是重晶石与伴生矿的颜色和密度的区别。原矿经过粗碎后,重晶石矿物与脉石矿物能够有效解离,手选可以选出块状的重晶石。如广西象州潘村矿,用手选法可以得到粒度在30~150mm,BaSO4含量>92%的富矿。手选法简单方便易行,对设备依赖低,成本小,但对矿石要求高并且生产效率低,对资源造成极大浪费。重选是根据重晶石与伴生矿物的密度差别进行提纯。原矿经破碎、磨矿至一定粒级进入重选设备进行分选从而将脉石剔除。湖南衡南重晶石矿重选后的硫酸钡含量达92%以上,手选尾矿经重选后可以得到硫酸钡含量达84.50%的重选精矿。磁选是利用不同矿石之间磁性的差异,在磁力的作用下进行选别的方法。磁选主要来除掉一些具有磁性氧化铁类矿物如菱铁矿,通常与重选联合使用,以降低重晶石精矿中铁的含量。1.2化学提纯1.2.1浮选法提纯随着高品位易选重晶石矿的不断开发利用,急待加大对低品位重晶石矿开发研究的力度。重晶石常与萤石、方解石、石英等矿物紧密伴生,品位低、嵌布粒度细、成分复杂,传统重选工艺难以使其有效分离。浮选可以适应各种复杂嵌布类型的重晶石,因而成为现阶段重晶石选别的主要方法。捕收剂是决定重晶石矿物能否有效分离的关键,常用的捕收剂根据吸附形式可以分为三种:①以化学吸附为主的阴离子捕收剂;②以物理吸附为主的阳离子捕收剂;③介于两者之间的两性捕收剂。根据重晶石与萤石的分离过程可分为两种:一种是抑制重晶石浮选萤石;另一种是抑制萤石浮选重晶石。喻福涛等采用油酸钠作为萤石捕收剂,YZ-4栲胶与水玻璃、硫酸铝组合作抑制剂,抑制重晶石浮选萤石,最终获得了CaF2品位为96.81%、回收率为92.44%的萤石精矿和BaSO4品位为91.36%、回收率为86.75%的重晶石精矿,实现了萤石与重晶石的高效分离。李名凤用十二烷基磺酸钠为捕收剂,硅酸钠与柠檬酸作萤石抑制剂,采用抑制萤石浮选重晶石方案,最终得到BaSO4品位为93.28%,回收率为94.06%的重晶石精矿。1.2.2煅烧提纯矿物煅烧过程表现为受热离解为一种组成更简单的矿物或矿物本身发生晶型转变,由一种固相热解为另一种固相和气相的物理变化过程。由于重晶石矿物在成床过程中混入Fe2O3、TiO2、有机质等杂质,这些杂质会使重晶石发灰、发绿及发青等,从而影响重晶石的纯度和白度,严重降低重晶石的使用价值。煅烧可使有机质挥发,煅烧除杂主要适用于去除能够在高温下吸热分解或挥发的杂质。雷绍民等将用硫酸酸洗后的重晶石矿粉在850℃煅烧2h,白度可由88.19%提高到90.64%;在950℃煅烧2h后,白度可达93.5%。1.2.3浸出提纯浸出提纯主要是用于除掉重晶石中的碳及有色杂质。它们的存在影响重晶石精矿的白度及应用前景。除掉这些杂质的主要方法有:酸浸法、氧化—还原法、有机酸络合法。酸浸法是利用酸与矿物中的杂质金属或金属氧化物进行反应,生成可溶于水或稀酸的化合物,经洗涤过滤,将可溶物去除,可以达到提纯的目的。雷绍明等将湖北某重晶石矿经过浓硫酸浸出后,可以使重晶石粉的白度从84.10%提高到88.60%。氧化—还原法首先加入氧化剂使矿物中伴生的金属化合物溶解,并氧化重晶石中的致色有机物,再加入还原剂将Fe还原成Fe,使其溶解,达到除杂增白、提高矿物品位的目的。有机酸络合法是在除铁过程中添加有机酸如EDTA、抗坏血酸、柠檬酸、草酸等,这类酸能溶解铁氧化物,并形成络合物,达到很好的除铁效果。李雪琴等在硫酸(1.6mol/L)酸浸重晶石中,添加草酸络合溶解出的Fe,可以将矿石中的主要致色物Fe除去。重晶石经过基本提纯后可以满足生产初级钡盐的要求,但部分精细和专用化产品仍无法生产,还需依赖进口。需要对重晶石的开发做进一步探索。

『肆』 什么是PR提纯技术

你上网查一下呗!

『伍』 如何提纯石英砂

石英砂提纯是除去石英砂中少量或微量杂质,获得精制石英砂或高纯石英砂(如电子级产品) 的高难度分离技术。近年来, 国内外对石英砂提纯工艺研究主要围绕着以下几个方面进行:

1 水洗、分级脱泥
石英砂中的SiO2 的品位随着石英砂粒度的变细而降低, 铁质和铝质等杂质矿物的品位则正好相反, 这种现象在含有大量粘土性矿物石英砂中尤为明显。所以在入选前对石英砂原矿进行水选、分级脱泥是非常必要的, 而且效果也是较为明显的。如江苏宿迁马陵山矿石英砂原矿化学组成为:SiO2 78.139 %、Fe2O3 11.68 %、Al2O3 11.128 %; 其粒度组成中- 011 mm 粒级含量为27.165 %。在对原矿进行预选水洗、分级脱泥后, SiO2 的品位上升到86.136 % , Fe2O3 降低至0.149 % , Al2O3 降低至6179 % , 除杂提纯效果较为显著。水洗、分级脱泥作为一种矿石入选前的预处理方法, 应用得较早也很普遍, 但对于存在于石英砂表面的薄膜铁和粘连性杂质矿物, 其脱除效果尚不甚显著。
2 擦洗
擦洗是借助机械力和砂粒间的磨剥力来除去石英砂表面的薄膜铁、粘结及泥性杂质矿物和进一步擦碎未成单体的矿物集合体, 再经分级作业达到石英砂进一步提纯的效果。目前, 主要有棒磨擦洗和机械擦洗二种方法。对于机械擦洗, 一般认为影响擦洗效果的因素主要是来自擦洗机的结构特点和配置形式, 其次为工艺因素, 包括擦洗时间和擦洗浓度。研究表明, 砂矿擦洗浓度在50 %~60 %之间效果最好, 浓度过大或过小, 都会降低杂质矿物的擦除效果, 而且在一定程度上反而加大了石英砂的提纯难度; 擦洗时间原则上以初步达到产品质量要求为基准, 不宜过长, 因为时间过长, 会加大设备磨损, 提高能耗和造成选矿提纯成本的增加。由于对于某些石英砂矿, 机械擦洗擦除效果不太理想,因此, 在我国棒磨擦洗工艺应用得较为普遍和相对成熟。如对某地石英砂原矿〔2〕经水洗、分级脱泥后, + 013 mm 以上的石英砂进行棒磨擦洗。结果表明, 经磨矿擦洗后, Fe2O3 从0.119 %降低到0.110 % , 铁的去除率达47.14 %。我们在对云南某地石英砂矿采用加药高效强力擦洗, 配合适当的工艺和设备, 结果发现比采用棒磨擦洗效果好, 棒磨擦洗回收率为49 % , 而加药高效强力擦洗回收率为73 %。加药的目的是增大杂质矿物和石英颗粒表面的电斥力, 增强杂质矿物与石英颗粒相互间的分离效果。21磁选工艺的采用, 可以最大限度地清除包括连生体颗粒在内的赤铁矿、褐铁矿和黑云母等弱磁性杂质矿物。强磁选通常采用湿式强磁磁选机或高梯度磁选机。

『陆』 如何用粗硅提纯得到单晶硅

晶体硅包括单晶硅和多晶硅,晶体硅的制备方法大致是先用碳还原SiO2成为Si,用HCl反应再提纯获得更高纯度多晶硅,单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。
以上反应都必须用专用昂贵设备进行,一般实验室基本没有条件做到,反应温度可能在2000℃左右,所以我觉得你找些书面资料了解一下就可以了。硅是半导体工业的重要原料,半导体材料的制备基础书很多,都应该讲到。
==============================================
硅的单晶体。具有基本完整的点阵结构的晶体。不同的方向具有不同的性质,是一种良好的半导材料。纯度要求达到99.9999%,甚至达到99.9999999%以上。用于制造半导体器件、太阳能电池等。用高纯度的多晶硅在单晶炉内拉制而成。
熔融的单质硅在凝固时硅原子以金刚石晶格排列成许多晶核,如果这些晶核长成晶面取向相同的晶粒,则这些晶粒平行结合起来便结晶成单晶硅。
单晶硅具有准金属的物理性质,有较弱的导电性,其电导率随温度的升高而增加,有显著的半导电性。超纯的单晶硅是本征半导体。在超纯单晶硅中掺入微量的ⅢA族元素,如硼可提高其导电的程度,而形成p型硅半导体;如掺入微量的ⅤA族元素,如磷或砷也可提高导电程度,形成n型硅半导体。
单晶硅的制法通常是先制得多晶硅或无定形硅,然后用直拉法或悬浮区熔法从熔体中生长出棒状单晶硅。单晶硅主要用于制作半导体元件。
高纯度硅在石英中提取,以单晶硅为例,提炼要经过以下过程:石英砂一冶金级硅一提纯和精炼一沉积多晶硅锭一单晶硅一硅片切割。
冶金级硅的提炼并不难。它的制备主要是在电弧炉中用碳还原石英砂而成。这样被还原出来的硅的纯度约98-99%,但半导体工业用硅还必须进行 高度提纯(电子级多晶硅纯度要求11个9,太阳能电池级只要求6个9)。而在提纯过程中,有一项“三氯氢硅还原法(西门子法)”的关键技术我国还没有掌 握,由于没有这项技术,我国在提炼过程中70%以上的多晶硅都通过氯气排放了,不仅提炼成本高,而且环境污染非常严重。我国每年都从石英石中提取大量的工 业硅,以1美元/公斤的价格出口到德国、美国和日本等国,而这些国家把工业硅加工成高纯度的晶体硅材料,以46-80美元/公斤的价格卖给我国的太阳能企 业。
得到高纯度的多晶硅后,还要在单晶炉中熔炼成单晶硅,以后切片后供集成电路制造等用。
纯净的硅(Si)是从自然界中的石英矿石(主要成分二氧化硅)中提取出来的,分几步反应:
1.二氧化硅和炭粉在高温条件下反应,生成粗硅:
SiO2+2C==Si(粗)+2CO
2.粗硅和氯气在高温条件下反应生成氯化硅:
Si(粗)+2Cl2==SiCl4
3.氯化硅和氢气在高温条件下反应得到纯净硅:
SiCl4+2H2==Si(纯)+4HCl
以上是硅的工业制法,在实验室中可以用以下方法制得较纯的硅:
1.将细砂粉(SiO2)和镁粉混合加热,制得粗硅:
SiO2+2Mg==2MgO+Si(粗)
2.这些粗硅中往往含有镁,氧化镁和硅化镁,这些杂质可以用盐酸除去:
Mg+2HCl==MgCl2+H2
MgO+2HCl==MgCl2+H2O
Mg2Si+4HCl==2MgCl2+SiH4
3.过滤,滤渣即为纯硅

光伏发电请您关注:大连森谷新能源

『柒』 如何提纯浓缩铀-235

提纯浓缩铀-235含量的技术比较复杂, 现时用来提纯铀-235的主要方法有气体扩散法离子交换法、气体离心法、蒸馏法、电解法、电磁法、电流法等,其中以气体扩散法最成熟。 气体扩散法——这是商业开发的第一个浓缩方法。该工艺依靠不同质量的铀同位素在转化为气态时运动速率的差异。在每一个气体扩散级,当高压六氟化铀气体透过在级联中顺序安装的多孔镍膜时,其铀-235轻分子气体比铀-238分子的气体更快地通过多孔膜壁。这种泵送过程耗电量很大。已通过膜管的气体随后被泵送到下一级,而留在膜管中的气体则返回到较低级进行再循环。在每一级中,铀-235/铀-238浓度比仅略有增加。浓缩到反应堆级的铀-235丰度需要1000级以上。 气体离心法——在这类工艺中,六氟化铀气体被压缩通过一系列高速旋转的圆筒,或离心机。铀-238同位素重分子气体比铀-235轻分子气体更容易在圆筒的近壁处得到富集。在近轴处富集的气体被导出,并输送到另一台离心机进一步分离。随着气体穿过一系列离心机,其铀-235同位素分子被逐渐富集。与气体扩散法相比,气体离心法所需的电能要小很多,因此该法已被大多数新浓缩厂所采用。 气体动力学分离法——所谓贝克尔技术是将六氟化铀气体与氢或氦的混合气体经过压缩高速通过一个喷嘴,然后穿过一个曲面,这样便形成了可以从铀-238中分离铀-235同位素的离心力。气体动力学分离法为实现浓缩比度所需的级联虽然比气体扩散法要少,但该法仍需要大量电能,因此一般被认为在经济上不具竞争力。在一个与贝克尔法明显不同的气体动力学工艺中,六氟化铀与氢的混合气体在一个固定壁离心机中的涡流板上进行离心旋转。浓缩流和贫化流分别从布置上有些类似于转筒式离心机的管式离心机的两端流出。南非一个能力为25万分离功单位的铀-235最高丰度为5%的工业规模的气体动力学分离厂已运行了近10年,但也由于耗电过大,而在1995年关闭。 激光浓缩法——激光浓缩技术包括3级工艺:激发、电离和分离。有2种技术能够实现这种浓缩,即“原子激光法”和“分子激光法”。原子激光法是将金属铀蒸发,然后以一定的波长应用激光束将铀-235原子激发到一个特定的激发态或电离态,但不能激发或电离铀-238原子。然后,电场对通向收集板的铀-235原子进行扫描。分子激光法也是依靠铀同位素在吸收光谱上存在的差异,并首先用红外线激光照射六氟化铀气体分子。铀-235原子吸收这种光谱,从而导致原子能态的提高。然后再利用紫外线激光器分解这些分子,并分离出铀-235。该法似乎有可能生产出非常纯的铀-235和铀-238,但总体生产率和复合率仍有待证明。在此应当指出的是,分子激光法只能用于浓缩六氟化铀,但不适于“净化”高燃耗金属钚,而既能浓缩金属铀也能浓缩金属钚的原子激光法原则上也能“净化”高燃耗金属钚。因此,分子激光法比原子激光法在防扩散方面会更有利一些。 同位素电磁分离法——同位素电磁分离浓缩工艺是基于带电原子在磁场作圆周运动时其质量不同的离子由于旋转半径不同而被分离的方法。通过形成低能离子的强电流束并使这些低能离子在穿过巨大的电磁体时所产生的磁场来实现同位素电磁分离。轻同位素由于其圆周运动的半径与重同位素不同而被分离出来。这是在20世纪40年代初期使用的一项老技术。正如伊拉克在20世纪80年代曾尝试的那样,该技术与当代电子学结合能够用于生产武器级材料。 化学分离法——这种浓缩形式开拓了这样的工艺,即这些同位素离子由于其质量不同,它们将以不同的速率穿过化学“膜”。有2种方法可以实现这种分离:一是由法国开发的溶剂萃取法,二是日本采用的离子交换法。法国的工艺是将萃取塔中2种不互溶的液体混和,由此产生类似于摇晃1瓶油水混合液的结果。日本的离子交换工艺则需要使用一种水溶液和一种精细粉状树脂来实现树脂对溶液的缓慢过滤。 等离子体分离法——在该法中,利用离子回旋共振原理有选择性地激发铀-235和铀-238离子中等离子体铀-235同位素的能量。当等离子体通过一个由密式分隔的平行板组成的收集器时,具有大轨道的铀-235离子会更多地沉积在平行板上,而其余的铀-235等离子体贫化离子则积聚在收集器的端板上。已知拥有实际的等离子体实验计划的国家只有美国和法国。美国已于1982年放弃了这项开发计划。法国虽然在1990年前后停止了有关项目,但它目前仍将该项目用于稳定同位素分离

『捌』 提纯工艺及设备

一、概述

天然矿物原料由于杂质矿物的混杂、浸染、结构镶嵌,有时还夹有碳质及有机质,往往不能满足工业生产要求,例如:用于核反应堆中子减速剂的鳞片石墨,要求石墨纯含量为99.995%;凝胶材料用膨润土,要求其中蒙脱石含量达99%;造纸涂料级高岭土,要求白度为90,粒度<2μm占90%;天然硅藻土的主腔孔道常易被粘土、碎屑堵塞,影响助滤性能,需对被堵塞腔孔进行疏通处理等。

二、矿物原料的提纯

(一)物理提纯

利用不同矿物在物理性质上的差异,使目的矿物分选富集,如重、电、磁选等方法。

前面已述。

(二)化学提纯

矿物的化学提纯,是利用不同矿物在化学性质上的差异,采用化学方法或化学方法与物理方法相结合,改变杂质组分的化学组成或存在形态,实现矿物的分离或提纯。主要应用于一些纯度要求很高,且机械物理选矿方式又难以达到纯度要求的高附加值矿物的提纯。其作用分为:酸、碱、盐的溶解作用;助熔剂的熔融作用;活泼气体的氧化、还原作用;高温汽化形成挥发性物质等。总之,目的是将杂质转化为可溶性的新物质或挥发性物质加以除去。

1.矿物的酸、碱处理

非金属矿物的酸、碱处理,主要是在相应酸、碱等药剂作用下,把可溶性矿物组分(杂质矿物或有用矿物)浸出,使之与不溶性矿物组分(有用矿物或杂质矿物)分离的过程。浸出过程是通过化学反应来完成的。对不同的有用矿物和杂质矿物要采取相应的酸、碱及药剂,见表2-9。

(1)矿物的酸法浸出

酸法浸出常用硫酸、盐酸、硝酸、草酸、氢氟酸作浸出剂,其中以硫酸使用最多。

硫酸浸出浓硫酸为强氧化剂,在加热时几乎能氧化一切金属,且不释放氢气,因氧化的发生是借助于未离解的硫酸分子,可将大多数硫化物氧化为硫酸盐。用酸浸出铜、铁等可形成可溶性溶液,而铅、银、金、锑等则留在固态渣中,在200~250℃条件下,热浓硫酸还可分解某些稀有元素矿物,如独居石、钛铁矿等。

浓硫酸具有强烈的吸水作用,用它处理的粘土矿物可作吸水干燥剂。许多有机物,尤其是碳水化合物,一旦与浓硫酸接触,会同其吸水性而发生碳化作用。浓硫酸处理粘土矿物一般是在常压,100~105℃加热条件下进行。

表2-9 常用酸、碱处理应用范围

可采用硫酸浸出处理硅藻土以及制备高纯SiO2

氢氟酸处理氢氟酸为无色液体,19.4℃沸腾。蒸气有刺激臭味、极毒,价格较贵。在水中可离解成离子。氢氟酸的特点是能溶解SiO2和硅酸盐,生成气态SiF4,故常用于制备高纯SiO2或除去矿物中的SiO2杂质等。

在浸出硅石(SiO2)中的金属杂质时,对某些包裹细密的杂质矿物,使用少量HF(低浓度)有助于SiO2部分溶解,以使杂质金属离子较易被其他药剂浸出,如采用0.02%~0.1%的稀氢氟酸和连二亚硫酸钠(0.02%~0.2%重量比),在常温下搅拌处理石英,可将其Fe2O3含量从0.15%降至0.028%。

借助HF能溶SiO2和硅酸盐的特点进行石墨提纯,除去其少量的硅酸盐矿物,原理过程为:将石墨和水按一定比例混合,根据石墨的灰分大小,加入氢氟酸,通入蒸汽加热,在特制的反应器内浸取若干小时,反应完成后,用NaOH溶液中和,经洗涤、脱水、烘干,即可除去其中的硅酸盐矿物杂质,获得纯度达99%以上的高纯石墨产品。

盐酸处理盐酸为HCl的水溶液,强酸之一。浓盐酸含HCl约37%,密度1.18g/mL,在水中可离解成离子。盐酸可与多种金属化合物反应,生成可溶性金属氯化物,其反应能力强于稀硫酸,可浸出某些硫酸无法浸出的含氧酸盐类矿物。同硫酸一样,在矿物加工工业中被大量应用。其缺点是对设备防腐要求较高。

石英砂的除铁提纯常采用盐酸法或盐酸与其他酸联合使用,用含18%的盐酸溶液,用量5%,处理石英砂,加热至50~80℃,作用时间2~3h,可将其Fe2O3含量降至0.015%。将盐酸溶液(浓度为1%~10%)和氟硅酸(浓度1%~10%)一起加入到含石英砂固体浓度为20%~80%的料浆中(或用盐酸处理,经水洗涤后,再用氟硅酸处理),在75℃至溶液沸点之间的温度下处理2~3h,滤出溶液,清洗去酸,可将石英砂中Fe2O3含量从0.059%降至0.0005%~0.0002%。

非金属矿物的酸处理浸出,亦可采用硝酸、草酸等,但工业上应用相对较少,其原理过程同硫酸、盐酸一致。

(2)矿物的碱处理及盐处理

氢氧化钠处理主要应用于硅酸盐、碳酸盐等碱金属与碱土金属矿物的浸出,如石墨、细粒金刚石精矿的提纯等。

石墨精矿(品位C>90%)和液态碱(浓度50%)按3∶1比例混均,在500~800℃温度下熔融,使硅酸盐矿物及钾、钠、镁、铁、铝等化合物熔融,冷却至100℃后水浸1h,水浸渣洗涤后加30%~40%的HCl,洗涤、脱水后的石墨品位可提高到99.0%以上,回收率可达88%~90%。该工艺对云母含量少的石墨精矿效果更好。

细粒金刚石用碱熔水浸出提纯原理过程与石墨相近。

碳酸钠及硫化钠处理碳酸钠溶液对矿物原料的分解能力较弱,但具有较高的选择性,且对设备的腐蚀性小,常用于粘土矿物的阳离子交换处理。

碳酸钠也可同氢氧化钠配合使用,去除金属氧化物效果更好。如在硅砂除铁中,在碳酸钠中加入浓度40%~50%的NaOH,加热100~110℃搅拌处理4~5h,经清洗、脱水后,Fe2O3含量从0.7%降至0.015%~0.025%。碳酸钠还可浸出矿石中的磷、钒、铝、砷等氧化物,成为可溶性钠盐。硫化钠溶液可分解砷、锑、锡、汞的硫化矿物,使它们生成相应的可溶性硫酸盐而转入浸出液中。

此外氯化钠、氯化铵亦可作为浸出剂脱除矿物中的金属杂质。

(3)矿物浸出工艺设备

用于矿物酸、碱处理的设备主要有三大类:渗滤浸出用渗滤浸出槽;常压搅拌浸出用机械搅拌浸出槽,空气搅拌浸出槽,流态化浸出塔;有压搅拌浸出用哨式加压釜、自蒸发器等。

渗滤浸出槽依处理量的大小,槽的外壳可用不同的材质制成。如处理量小,可用碳钢槽或桶;处理大时,用砖、石、水泥砌成,内衬以一定厚度的防腐层,并且不能漏液。为便于浸出液流动,底部略向浸出液出口方向倾斜,将出口塞住后,用人工或机械将矿石(≤10mm)均匀地装入槽内,加入配好的浸出剂,浸泡数小时或更长时间后再放液。生产中可采用多个渗滤槽同时操作。

常压搅拌浸出设备(机械搅拌浸出槽)可分为单桨和多桨搅拌两种,机械搅拌器可采用不同的形状,有桨叶式、旋桨式、锚式和涡轮式。机械搅拌浸出槽结构见图2-37。

搅拌器的材质要依浸出介质而定,酸浸时槽体可用碳钢,内衬橡胶、耐酸砖或聚四氟乙烯塑料;或不锈钢槽、搪瓷槽等。搅拌桨一般为碳钢衬胶、衬玻璃钢或由不锈钢制成。槽体为圆柱形,槽为圆环形或平底,中央有循环筒。搅拌浆装在循环筒下部。可采用电加热,夹套加热或蒸汽直接加热方式,以控制浸出过程的温度,蒸汽直接加热时,蒸汽的冷凝会使矿浆浓度和试剂浓度发生变化。搅拌槽的容积依生产规模而定,机械搅拌槽一般用于生产规模较小的厂矿。

有压搅拌浸出设备(哨式空气搅拌加压釜),其结构见图2-38。

图 2 -37 机械搅拌浸出槽

图 2 -38 哨式加压釜

矿浆自釜下端进入,与压缩空气混合后通过旋涡哨从喷嘴进入釜内,呈紊流状态在釜内上升,然后经出料管排出。釜内矿浆的加热或冷却,一般采用夹套间接传热方式,釜内装有事故排料管。经高压釜浸出后的矿浆,须将压力降至常压后才能送下一作业处理。

2.矿物的化学漂白

作为填料或颜料等在工业中应用的非金属矿物粉体材料,常对白度有较高的要求,在一定条件下,白度越高,应用范围越大,附加值越高。而原矿及物理方法提纯后的精矿往往难以满足要求,为此必须对矿物进行增白处理,较常用的是进行化学漂白。

目前,国内对非金属矿物粉体材料进行化学漂白多集中在高岭土矿种上,且已有工业规模的生产应用。其他一些矿物也已成为潜在的漂白处理对象,如伊利石、蒙脱石、累托石、凹凸棒石、泡泡石、硅藻土、硅石等。尤其是硅藻土的漂白,做的较多。

(1)矿物化学漂白的原理及方法

影响矿物白度的主要因素是矿物本身的染色杂质矿物污染,如铁、钛、硫矿物和有机杂质。为此矿物漂白前,首先须了解矿石中染色杂质的特征、含量及赋存状态。依据其染色成因不同,采用不同的漂白方式。

矿物化学漂白方法有还原漂白和氧化漂白两种。还原漂白主要是用还原剂对矿物漂白,常用亚硫酸盐、连二亚硫酸盐、硫酸氢铵等,如Na2SO3、Na2S2O4、ZnS2O4、NH4HSO4等,其他还有HCl、草酸及草酸盐等。氧化漂白是以氧化剂对矿物进行漂白处理,常用过氧化物、次氯酸盐、臭氧、高锰酸钾等。在工业中氧化漂白和还原漂白可单独使用,也可分段联合使用。

还原漂白多在酸性介质中进行,常以H2SO4调节酸度。其原理为矿物中的金属染色氧化物被还原生成可溶性的硫酸盐而被除去。

影响漂白的因素主要有:矿浆浓度、漂白剂用量、pH值、漂白剂添加次数、温度、漂白时间、添加剂等。当添加次数增至12次以后,漂白效果趋于稳定;温度以40℃左右为好;时间一般在两小时左右为好;添加剂主要包括分散剂、缓冲剂、整合剂等。

(2)工艺流程

原矿→磨矿→制浆→调浆→强烈搅拌→磁选→分级→磁选→浓缩→漂白→过滤→烘干→产品。

3.生物漂白

在自然界有一类微生物,可直接或间接地参与金属硫化矿物的氧化和溶解过程,这类微生物可在金属硫化矿和煤矿的矿坑水以及土壤中找到它们的踪迹。和矿物浸出有关的微生物大部分属于自养菌,这类微生物在生长和繁殖过程中,不需要任何有机营养,而是完全靠各种无机盐而生存。还有一类微生物则与之相反,它们需要提供现成的有机营养才能生存,叫做异养菌。某些异养菌也可以溶浸金属矿物,但研究比较充分、在生产中得到实际应用的主要是自养类微生物。

微生物浸出主要指氧化铁硫杆菌等自养细菌浸出,所以通常叫细菌浸出。如除铁漂白,是利用某些微生物(细菌,真菌)具有从氧化铁(褐铁矿、针铁矿)中溶解铁的能力。利用微生物这种溶解铁的能力,可将高岭土中所含铁杂质除去。微生物这种溶解铁的能力,情况很复杂,所涉及的一些主要反应过程和多数研究者所认可的主要反应机理有:细菌浸出直接作用说,细菌浸出间接作用说和细菌浸出复合作用说(王淀佐等,2003)。

(1)细菌浸出直接作用

在有水和空气的条件下,受氧化铁硫杆菌作用,金属硫化矿会发生如下反应:

非金属矿产加工与开发利用

(2)细菌浸出间接作用

黄铁矿在自然条件下缓慢氧化生成FeSO4和H2SO4,在有细菌的条件下,反应被催化快速进行:

非金属矿产加工与开发利用

最终生成Fe2(SO4)3和H2SO4,Fe2(SO4)3是一种很有效的金属矿物氧化剂和浸出剂,铜及其他多种金属矿物都可被Fe2(SO4)3浸出,浸出示例如下:

黄铁矿浸出:FeS2+7Fe2(SO4)3+8H2O→15FeSO4+8H2SO4

(3)细菌浸出复合作用

复合作用机制是指在细菌浸出当中,既有细菌的直接作用,又有通过Fe3+氧化的间接作用。有些情况下以直接作用为主,有时则以间接作用为主,但两种作用都不可排除,这是迄今为止绝大多数研究者都赞同的细菌浸出机制。实际上,大多数矿石中,总会多少存在一些铁的硫化矿,所以浸出中Fe3+的作用不可排除,上面提到的黄铁矿的浸出,就是两种机制都存在的例子。

4.热处理

(1)焙烧

焙烧是在适宜的气氛和低于矿物原料熔点的温度条件下,使矿物原料中的目的矿物发生物理和化学变化的工艺过程。该工艺过程表现为矿物(化合物)受热离解为一种组成更简单的矿物(化合物),或矿物本身发生晶形转变。在矿物的焙烧过程中,矿物组分将发生变化。

根据焙烧反应性质的不同,可将焙烧分为以下几种:

1)氧化焙烧:于氧化气氛中加热矿物,使炉气中的氧与矿物中可燃组分作用或矿物本身在氧化气氛中焙烧。

2)还原焙烧:在还原性气氛中使金属氧化物还原成低价氧化物(或金属形态)或矿物在还原气氛中进行焙烧。

3)氯化焙烧:在中性或还原性气氛中加热矿物,使之与氯气或固体氯化剂发生化学反应,生成可溶性金属氯化物或挥发性气态金属氯化物。

4)离析焙烧:于中性或弱还原性气氛中加热矿物,其中的有价组分与固态氯化剂(NaCl,CaCl2等)反应,生成挥发性气态金属氯化物,并随即沉积在炉料中的还原剂表面。

5)磁化焙烧:在弱还原性气氛中,使弱磁性赤铁矿焙烧并还原成强磁性的磁铁矿。

此外,还有硫酸化焙烧、加盐焙烧等。

应用于非金属矿物的主要是氧化焙烧、还原焙烧、氯化焙烧等。

(2)煅烧

煅烧是指矿物加热分解的过程,由一种固相热解为另一种固相和气相的分解反应过程,且气相在两种凝聚相内以及两凝聚相间均不形成固溶体。如碳酸盐矿物(菱铁矿、石灰石等)硫酸盐矿物如石膏等的煅烧。非金属矿物提纯加工方面,主要用于高岭土的煅烧。其他非金属矿如硅藻土、石膏、珍珠岩、蛭石等主要是应用煅烧技术来加工制品。

硅藻土采用焙烧工艺可达到提纯和活化的目的,将硅藻土粉加入回转窑中,在870~1100℃条件下,氧化焙烧2~5h除去杂质,经磨矿、分级后,可生产出不同级别用作助滤剂的产品。

石膏矿(CaSO4·2H2O)经低温(170~220℃)煅烧成为半水石膏,高温煅烧(300~800℃)则成无水石膏。

珍珠岩为火山玻璃质岩石,通常在700~1200℃煅烧后,其煅烧产品为膨胀珍珠岩。

蛭石经高温煅烧后体积迅速膨胀数倍至数十倍,形成膨胀蛭石,其平均容重为100~130kg/m3

高岭土的煅烧

高岭土煅焙烧的目的主要是脱除有机碳提高白度,同时在煅烧过程中高岭岩羟基被脱除,造成一定的孔隙结构,使其活性增加,具备功能性材料的特性。

高岭土的煅烧,按煅烧温度划分,有低温煅烧(650℃以下)、中温煅烧(650~1050℃)、高温煅烧(1300~1525℃)等。不同的煅烧温度,所得产品性能及用途也有差别。

650℃温度以下脱羟煅烧的高岭土具有优良的电性能,用作电缆绝缘层的电性能改良剂,或用于橡胶制品及橡胶密封材料的填料。

700~860℃煅烧高岭土,其高岭石晶体在层间形成多孔结构,扩大了吸附能力及比表面积,活性好,用于制备合成沸石、农药载体或催化剂载体等。此时除对产品有较高白度要求外,对产品活性、细度及铝硅比亦有要求。

860~1050℃煅烧分为两种:950℃以下为不完全煅烧,1050℃为完全煅烧,前者活性好于后者,但白度较后者差,后者具有更高的白度和亮度、吸油值高、比表面积大、遮盖率好,作纸张填料具有良好的光学性能,可部分(表面改性后)代替钛白粉。

经过1300~1525℃煅烧的高岭土,高岭石晶体发生相变,形成莫来石化,可作为耐火材料或耐火制品的填料、陶瓷窑具等材料,其耐火度大于1770℃,莫氏硬度7~8。耐磨性、热稳定性及化学稳定性好。

非金属矿物焙烧或煅烧设备主要是隧道窑、回转窑、旋转立窑、倒焰窑、梭式窑等。

『玖』 真空升华提纯的方法是什么

真空升华提纯是不同于结晶、萃取、色谱、精馏、膜分离等纯化技术的又一种新型分离技术。“升华”提纯是由固体变成气体(或由液体变成气体)进而分离,它具有很高的分离度。由于是在真空条件下操作,所需温度较低,所以分离过程不会破坏材料分子结构。
真空升华提纯技术可以应用于有机物与有机物、有机物与无机物、无机物与无机物之间的分离,因此,它广泛应用于精细化工领域,特别是在有机电致发光材料和薄膜太阳能电池材料领域得到了很好的发展。

『拾』 目前我国是否掌握多晶硅提纯的核心技术

绝对已经掌握了多晶硅技术,而且又有突破,所以才能左右全球太阳能光伏市场。

阅读全文

与石英股份提纯技术如何相关的资料

热点内容
基金代码481001基金净值 浏览:261
中国人民银行外汇结汇业务 浏览:781
股票pdi 浏览:366
云南白药股票投资分析报告 浏览:581
买基金为什么显示的股票 浏览:251
香港股票开头 浏览:906
怎样无抵押贷款100万 浏览:493
100日元元等于多少人民币多少人民币 浏览:170
草根创业是拿不到天使投资的 浏览:659
乙二醇期货库存 浏览:91
南京医药股票怎么样 浏览:386
股票换手率高好不好 浏览:654
易方达5G概念基金有哪些 浏览:526
富国文体健康股票基金净值 浏览:805
4万5美金多少人民币汇率 浏览:46
新兴股票市场 浏览:33
融出资金业务 浏览:954
美元人民币汇率2019年4月29日 浏览:857
网信理财卷码 浏览:774
东方融汇理财 浏览:492