A. 线性回归系统(LR)的指标是什么
您好
线性回归分析和指数回归分析其实理论基础是一样的,基本没有区别,另外,今年的股票基本会出现大幅度的下跌,这已经是不可避免的了,经济数据您也可以看到,股票市场的股票业绩下滑也是不争的事实,另外大股东的股票减持和注册制度加快实施,也会严重影响股票市场,另外新股加速扩容和人民币加速贬值,都在很大的方面压制股票,这些还只是股票市场困难的一个部分,所以作为理财师我建议您,保持观望,远离股市,真诚回答,!
B. 请股票公式高手解释下SLOPE(线性回归斜率)是什么意思有什么用,具体是指哪方面越详细越好,麻烦您了
以最小平方法做线性回归估计这直线方程式
y=a+b*x;
最小平方法求出估计值a,b,代入得估计直线}
复制内容到剪贴板代码:
x:=k棒值;
y:=c;
b1:=∑(x(i)-avr(x,30))*(y(i)-avr(y,30));
b2:=∑(x(i)-avr(x,30))^2;
b:=b1/b2;
a:=avr(y,30)-b*avr(x,30);
SLOPE=(X,N)
表示以n个值的样本行最小平方法估测直线,slope斜率就是前面的b
C. Python 关于两个股票线性回归的 求教
你好:上面的程序,请看如下代码:#-*-coding:cp936-*-end=input("是否结束(y/n):")whileend=="n":print"Numberofcoordinates:2"xx=input("x's:")yy=input("y's:")a=float(list(xx)[0])b=float(list(xx)[1])c=float(list(yy
D. 股票中画线工具的线性回归带怎么用
线性回归分析是一种可以减少市场价格走势“杂音”的方法之一。最专简单的解释就是在价属格线图上画一条直线,使得这条直线于每个价格距离的平方的加总是最小的。这种分析方式比均线灵敏,也可能会有更多的交易机会。而在回归线的基础上,这篇文章要探讨2个新的参数:回归线斜率以及R平方。利用这两个参数的结合,我们来试着抓出价格的趋势。
线性回归画法:
将鼠标从一个相对低点拖曳到一个相对高点即得到百分比线。
用法:
线性回归、线形回归带及线形回归通道:线性回归、线性回归带及线性回归通道是根据数学上线性回归的原理来确定一定时间内的价格走势。线性回归将一定时间内的股价走势线性回归,然后来确定这一段时间内的总体走势;线性回归带是根据这一段时间内的最高、最低价画出线性回归的平行通道线;回归通道是线性
E. 股市中股票涨速怎么计算N日线性回归斜率怎么算谢谢,嘿嘿。
涨速是相对某个时刻之前的某个价格而言。
例如,某个股票5分钟之前的股价是10元,而回现在的价答格是10.1元,则这个股票的5分钟涨速为:
(10.1-10)/10×100%=1%
N日线性回归斜率怎么算
以最小平方法做线性回归估计这直线方程式
y=a+b*x;
最小平方法求出估计值a,b,代入得估计直线}
复制内容到剪贴板代码:
x:=k棒值;
y:=c;
b1:=Σ(x(i)-avr(x,30))*(y(i)-avr(y,30));
b2:=Σ(x(i)-avr(x,30))^2;
b:=b1/b2;
a:=avr(y,30)-b*avr(x,30);
SLOPE=(X,N)
表示以n个值的样本行最小平方法估测直线,slope斜率就是前面的b
F. 请问什么是线性回归线
线性回归是用来从过去价值中预测未来价值的统计工具。就股票价格而言,它通常用来决定何时价格过份上涨或下跌(行情极端)
线性回归趋势线使用最小平方法做出的一条尽量贴近价格线的直线,使价格线与预测的趋势线差异小。
线性回归线方式:Y=a+bx
其中:a=(∑y-b∑x)/n
b=n∑(xy)-(∑x)(∑y)/n∑x?2-(∑x)?2
x是目前时间段
y是时间段总数原理:如果不得不去猜测某一股票明天的价格,较合逻辑的猜测就应该是“尽量贴近今天价格”如果股票有上涨的趋势,一个好的猜测就是尽量贴近今天的价格加上一个上调值。线性回归分析正是用统计数字来验证了这些逻辑假设。
线性回归线是用最小平方匹配法求出的两点间的趋势线。这条趋势线表示的是中间价。如果把此线认作是平衡价的话,任何偏移此线的情况都暗示着超买或超卖。
在中间线的上方和下方都建立了线性回归渠道线。渠道线和线性回归线的间距是收盘价与线性回归线之间的最大距离。回归线包含了价格移动。渠道下线是支撑位,渠道上线是阻挡位。价格可能会延伸到渠道外一段很短的时间,但如果价格持续在渠道外很长一段时间的话,表明趋势很快就会逆转了。
线性回归线是平衡位置,线性回归渠道线表示价格可能会偏离线性回归线的范围。
G. 线性回归的基本假设
1、随机误差项是一个期望值或平均值为0的随机变量;
2、对于解释变量的所有观测值,随机误差项有相同的方差;
3、随机误差项彼此不相关;
4、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;
5、解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵;
6、随机误差项服从正态分布。
(7)股票线性回归扩展阅读:
线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
线性回归有很多实际用途。分为以下两大类:
1 如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
2 给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
H. 通达信股软中线性回归斜率SLOPE的具体运算公式是
以最小平方法做复线性回归制估计这直线方程式
y=a+b*x;
最小平方法求出估计值a,b,代入得估计直线}
复制内容到剪贴板代码:
x:=k棒值;
y:=c;
b1:=∑(x(i)-avr(x,30))*(y(i)-avr(y,30));
b2:=∑(x(i)-avr(x,30))^2;
b:=b1/b2;
a:=avr(y,30)-b*avr(x,30);SLOPE=(X,N)
表示以n个值的样本行最小平方法估测直线,slope斜率就是前面的b
I. 怎么正确计算股票Beta值的线性回归,计算感觉有问题
这个你回归出来的方程是 Y=-0.174+0.59X 你的beta是0.59 置信度很小,说明beta显著不为0
但你的截距 -0.174的置信度是专0.486,可以认为是属0了。所以回归的没错,只是你对这个表还不熟悉。
你说的beta为0.762是先把数据标准化再做回归,标准化的数据就没有截距(或者截距为0),所以第一行标准系数是空的。
J. 股票回归射线的原理和画法
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛。