Ⅰ 黄金分割计算方法
...
长边为1,设中边为x
x^2=1-x
x^2+x-1=0
由求根公式得方程正根为(根号5-1)/2
Ⅱ 黄金分割怎么计算
首先要了解黄金分割点的由来:
作一条线段AB,然后在线段AB上取一点C,使得AC/CB=CB/AB
这个点是视觉上的最美的点也是很有现实意义的一点,C点即为黄金分割点。
好了,黄金分割点画出来了。该怎么求黄金分割值呢
设线段AB长度为1,CB(较长的那一段)为x
由AC/CB=CB/AB得:(1-x)/x=x
即:x^2+x-1=0
解的方程的解为:
x=(-1+根号5)/2
或x=(-1-根号5)/2
(线段长度不可能为负,此根舍去)
所以黄金分割值为(-1+根号5)/2
Ⅲ 黄金分割点怎么算
黄金分割点是指分一线段为两部分,使得原来线段地长跟较长地那部分地比为内黄金分割容地点。线段上有两个这样地点。
利用线段上地两黄金分割点,可作出正五角星,正五边形。
黄金分割点约等于0.618:1
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
Ⅳ 黄金分割0.618是怎么计算出来的
黄金分割是将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值。
计算方法如下:设一条线段AB的长度为a,C点在靠近B点的黄金分割点上,且AC为b,则a比b就是黄金数;
(4)黄金分割怎么计算方法扩展阅读:
黄金分割的起源:现在人一般认为,黄金分割是由公元前6世纪的毕达哥拉斯发现的。系统论述黄金分割的最早记载是欧几里得的《几何原本》,在该书第四卷中记述了用黄金分割作五边形、十边形的的问题,在第二卷第11节中详细讲了黄金分割的计算方法,并称
0.618叫做“黄金数”。
在《几何原本》中把它称为“中末比”。直到文艺复兴时期,人们重新发现了古希腊数学,并且发现这种比例广泛存在于许多图形的自然结构之中,因而高度推崇中末比的奇妙性质和用途。
最早在著作中使用“黄金分割”这一名称的是德国数学家M·欧姆,他是发现电学的欧姆定律的G·S·欧姆的弟弟。他在自己的著作《纯粹初等数学》(第二版,1835)中用了德文字:“der
goldene schnitt(黄金分割)”来表述中末比,以后,这一称呼才逐渐流行起来。
参考资料来源:网络-黄金分割
Ⅳ 黄金分割的正确计算方法
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
Ⅵ 黄金分割数是怎么算出来的
^把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。线段的黄金分割(尺规作图) 1.设已知线段为AB,过点B作BC⊥AB,且BC=AB/2; 2.连结AC; 3.以C为圆心,CB为半径作弧,交AC于D; 4.以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。
Ⅶ 在数学中黄金分割点的及计算公式是什么
黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
这个分割点就叫做黄金分割点(golden section ratio),通常用Φ表示。这是一个十分有趣的数字,以0.618来近似表示,通过简单的计算就可以发现:(1-0.618)/0.618≈0.618,即一条线段上有两个黄金分割点。
计算公式:
黄金分割点美学价值:
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。
就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。
正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。
并且人们认为如果符合这一比例的话,就会显得更美、更好看、更协调。在生活中,对“黄金分割”有着很多的应用。如:最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=0.618;最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=0.618。