『壹』 量化交易主要有什么经典的策略
您好
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
『贰』 如何建立一个股票量化交易模型并仿真
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
『叁』 期货开户 程序化交易 量化投资 交易策略 量化模型 开拓者 金字塔 CTP 交易策略 量化模型
文华
1上手快,简单易学,通用的脚本语言(类似于传统的股票软件指标语言)。提供基本自由度的功能实现。
2可进行历史数据回测。
3策略可加密。
4期货市场投资客户。
5刚开始接触程序化交易的投资客户。
6熟悉通用炒股软件指标编写的客户。
·开拓者
7功能强大,编程语言比较专业(类Pascal),可方便的编写自己的函数。提供高自由度的功能实现。
8可进行历史数据回测。
9策略可加密。
10期货市场投资客户。
11有一定编程能力支持的投资客户。
12交易策略比较复杂的投资客户。
·达钱+MC
13源于国外,经久考验,功能强大。
14全球标准的支持策略语言,EasyLanguage。
15编译及回测速度效能高,集成优异的策略回测和优化功能,提供详细、完整的策略绩效报告。
16支持自定义任一周期线图显示及策略回测
17支持Excel插件、完整数据管理接口(DDE,GlobalServer,……)
18期货市场投资客户。
19有一定编程能力支持的投资客户。
20交易策略比较复杂的投资客户。
21需要使用Excel软件辅助程序化交易的客户。
·东海潜龙
22编程语言专业,实现功能非常灵活。提供完全自由的功能实现。
23可进行历史数据回测。集群服务器模式,稳定性高。
24直连交易所,交易速度很快。
25可同时进行股票投资和期货投资,连接国内股票、期货六大交易。
26可定制交易界面。提供接口,可连接外部策略软件。
27股票市场、期货市场专业投资客户和机构投资者。
28对速度和稳定性有更高要求的客户(比如高交易频率的客户)。
29交易策略复杂,定制化要求程度高。
·金字塔
30国内独家支持图表程式化交易、后台程式化交易、高频交易、趋势线预警交易等多种自动交易模式。
31支持一键下单,图表下单等多种手工下单模式。
32程式化交易模型编写及操作兼容国内主流分析软件。
33支持套利、多帐户交易及动态止赢止损功能。
34支持板块指数、自定义数据等横向统计功能。
35基于OFFICE架构下的VBA二次开发功能。
『肆』 量化模型是什么意思
量化模型,是把数理统计学应用于科学数据,以使数理统计学构造出来的模型得到经验上的支持,并获得数值结果。这种分析是基于理论与观察的并行发展,而理论与观测又通过适当的推断方法而得以联系。
一个完整的量化模型包括哪些?
近几年,量化投资在国内兴起,但在很多人眼里,量化投资仿佛是一个非常神秘的新事物。而实际上,量化投资的无非就是宽客通过计算机语言,将交易策略布置到一个量化系统中,然后进行回测和实战的过程。量化投资的本质还是投资者的智慧,只是实现过程中运用到计算机这一工具。
宽客们到底是如何系统的构建一个完整的量化模型的?可以肯定的是,宽客跟普通投资者一样,也在观察市场,产生一些普通投资者也会想到的想法,当宽客产生一些想法时,他们会通过计算机去验证他们的想法是否靠谱或者是能否带来收益。而作为普通投资者,实现想法往往是困难的,如同普通投资者在投资或炒股过程中,发现在15分钟K线图,上升趋势中股价跌破MA169后便会进入调整。普通投资者只是感觉,而宽客可以通过编写程序然后在市场的历史数据回测,验证这个想法是否靠谱。
一个简单的想法编写成简单的程序,这明显不能称作为量化模型,但这却是任何一个量化模型的来源,即人的想法。完整的量化模型应当包括:策略模型、风险模型、交易成本模型、投资组合构建模型、执行模型,如下图:
投资组合构建模型:投资组合构建模型在于构建一个能创造最大盈利的投资组合。主要分为:基于规则的投资组合构建模型和基于优化的投资组合构建模型。基于规则的投资组合构建模型主要分三类:相等头寸加权,相等风险加权,信号驱动型加权。其中前两类分别保证了投资组合的每个个股头寸相等和所承担的风险相等。第三类根据信号强度来加权,投资组合中个股与策略模型设定的条件越接近则赋予的权重越大,这是合理决定头寸规模的最佳途径。
执行模型:执行模型是实施量化模型的最后一个环节,如果没有执行模型,那么整个量化模型并没有存在的意义。执行模型中订单执行算法是最关键的,其主要目的是,以尽可能低的价格,尽可能完整地完成想要交易的订单。具体的执行算法包括:采用何种订单类型,采用进取订单还是被动订单,采用大订单还是小订单。对于资金量比较小的宽客,执行模型往往是比较简单的,一旦出现信号,其所需成交量的并不需要太大。而对于资金量较大的宽客来说,执行模型是比较复杂的,需要根据实际情况来选择合适的下单方式。
以上就是量化模型的整个系统框架,其中任何一个部分都发挥至关重要的作用,因此一个完整的能盈利的量化模型是非常有价值的。
『伍』 量化交易都有哪些主要的策略模型
随着量化交易的发展,单一技术指标的策略会面临失效的问题。所以现在的策略都是复合型的。
经典量化交易策略(包括价值投资、技术指标、配对轮动、机器学习等)、研究型文章等
『陆』 量化交易有哪些重要的模型
您好,
Alpha策略模型
Alpha策略包含不同类别:
按照研究内容来分,可分为基本面Alpha(或者叫财务Alpha)和量价Alpha。业内普遍不会将这两种Alpha完全隔离开。但是不同团队会按照其能力、擅长方向以及信仰,在做因子上有所偏向。有的团队喜欢用数据挖掘的方式做量价因子,而有的团队喜欢从基本面财务逻辑的角度出发,精细地筛选财务因子。
按照是否对冲可以分为两类。全对冲的叫做Alpha策略,不对冲的在市面上常被称作指数增强策略。二者所用模型一样,但后者少了期货的对冲。缺少对冲有坏处也有好处,坏处是这种策略的收益曲线是会有较大的回撤。但好处方面,在大涨的年份,这种策略的表现会特别好;从长期看, 公司可以赚取BETA分红收益, 并且可以吸引看好指数的客户。相比之下而对冲Alpha策略一般在大牛市中会远远跑输指数;此外不对冲的好处是节约资金,对冲的Alpha策略至少要放20~30%的资金在期货端用来做保证金。
2.CTA策略模型
关于CTA策略,
CTA策略的特点是收益风险比相对Alpha来说会较低。但是在行情较好的年份收益可能会很高,尤其是在早期。而且,无论是在编程还是策略上,CTA入门的难度相对来说都是最低的。
请采纳
『柒』 量化交易都有哪些主要的策略模型有什么好的平台
1. 收集者整理一些常见的技术指标,比方MA,MAD,KDJ,RSI,等,以及一些不常见或自定义的技术指标几十种,大概50-80种。
2. 收集常用的交易模式大概几十种,包括网格,突破,斐波那契,波浪,等等。
3. 在一定的初始化条件下,利用上面这些素材进行自由组合,生产处海量的交易系统
4. 利用计算机的大规模计算能力,用历史数据对上述的交易系统进行回测,根据回测结果优选出若干个盈利能力和资金回撤较小的交易系统。
5. 对优选出的交易系统进一步优化。注意,是对交易模型进行优化,并不是对参数进行过度优化。
6. 扩大测试数据的范围,比方,由原先的2-3年数据回测扩大到15年数据回测。
7. 最终产生出若干个表现出色的交易系统。这几个交易系统之间最好有一定的对立关系,而不是连锁关系,就是说,当用于同一个证券品种交易时,最好同时开启几个交易系统,形成互锁关系,降低风险,减少资金回撤比例。
至于好的平台,建议使用大虎鲸智投或者小蚜虫股票等。
『捌』 如何建立量化交易模型
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统
『玖』 量华网上的量化交易有哪些主要的策略模型
国内的量化策略可以简单分为三个类型,Alpha策略,CTA策略以及高频交易策略。其中主要的是Alpha策略和CTA策略。