⑴ 黄金分割点位都有哪些点
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
⑵ 黄金分割线怎么分
黄金分割线来是一种古老的数学方自法。
黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条件下大胆断言:一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0.618,那么,这样比例会给人一种美感。后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。
⑶ 黄金分割率
数学定义
把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。其比值是(√5-1):2,近似值为0.618,通常用希腊字母Ф表示这个值。[1]
附:黄金分割数前面的32位为:0.6180339887 4989484820 458683436565
⑷ 黄金分割线怎么算出来的
假设一只强势股,上一轮由10元涨至15元,呈现一种强 势,然后出现回调,它将回调到什么价位呢?黄金分割的0.382位为13.09元,0.5 位为12.50元,0.618位为11.91元,这就是该股的三个支撑位。若股价在13. 09元附近获得支撑,该股强势不变,后市突破15元创新高的概率大于70% 15-(15-10)*0.382=13.09 15-(15-10)*0.5=12.50 15-(15-10)*0.618=11.91 其实不一定算,股票软件上有黄金分割位的功能。
画黄金分割线的第一步是记住若干个特殊的数字: 0.191 0.382 0.618 0.809 1.191 1.382 1.618 1.809 2.191 2.382 2.618 2.809 这些数字中0.382,0.618,1.382,1.618最为重要,股价极容易在由这4个数产生的黄金分割线处产生支撑和压力。 第二步是找到一个点。这个点是上升行情结束,调头向下的最高点,或者是下降行情结束,调头向上的最低点。当然,我们知道这里的高点和低点都是指一定的范围,是局部的。只要我们能够确认一趋势(无论是上升还是下降)已经结束或暂时结束,则这个趋势的转折点就可以作为进行黄金分割的点。这个点一经选定,我们就可以画出黄金分割线了。 在上升行情开始调头向下时,我们极为关心这次下落将在什么位置获得支撑。黄金分割提供的是如下几个价位。它们是由这次上涨的顶点价位分别乘上上面所列的几个特殊数字中的几个。假设,这次上涨的顶点是10元,则 8.09=10×0.809 6.18=10×0.618 3.82=10×0.382 1.91=10×0.191 这几个价位极有可能成为支撑,其中6.18和3.82的可能性最大。 同理,在下降行情开始调头向上时,我们关心上涨到什么位置将遇到压力。黄金分割线提供的位置是这次下跌的底点价位乘上上面的特殊数字。假设,这次下落的谷底价位为10元,则 11.91=10×1.191 21.91=10×2.191 13.82=10×1.382 23.82=10×2.382 16.18=10×1.618 26.18=10×2.618 18.09=10×1.809 28.09=10×2.809 20=10×2 将可能成为未来的压力位。其中13.82和16.18以及20元成为压力线的可能性最大,超过20的那几条很少用到。 此外,还有另一种使用黄金分割线的方法。选择最高点和 最低点(局部的),以这个区间作为全长,然后在此基础上作黄金分割线,进行计算出反弹高度和回荡高度。 在看盘软件上,有画线工具,选择“黄金回档”或“黄金回调”或“垂直黄金比例分割”各看盘软件的名称由差异。然后选择一个高点,一个低点,就可以知道他们之间的黄金比例关系了,这组关系中0.618和0.382的效果尤为明显。 黄金分割的由来: 一、神奇数字 13****的意大利数学家斐波纳奇发现了神奇数字。即:1,2,3,5,8,13,21,34,55,89,144……这些数字的前两个之和,等于后一个数字。如:1+2=3;2+3=5;……55+89=144……神奇数字更神奇的是: 1.前一个数字与后一个数字比,比率趋于0.618034……(无理数)。如:1÷2=0.5;2÷3=0.667;3÷5=0.6;5÷8=0.625;8÷13=0.615;……89÷144=0.618…… 2.后一个数字与前一个数字比,比率趋于1.618。如:5÷3=1.667;8÷5=1.6;21÷13=1.615;89÷55=1.618…… 3.相隔两位的数字相比,比率接近0.382和2.618。如:8÷21=0.381;13÷34=0.382;21÷55=0.382;21÷8=2.625;43÷13=2.615;55÷21=2.619…… 4.0.382×0.618=0.236 从以上计算可以看出,神奇数字基本是围绕0.382和0.618发生各种变化,从而衍生出其他的数字,如1.618,2.618,0.236,……因此,股市的涨涨跌跌也与神奇数字有关。 二、黄金定律 该定律(也称黄金分割率)认为,任何长度的单位进行分割,0.618和0.382的神奇数字是一个分割点,在这分割点上会产生黄金效果。所以称为黄金定律。如:某人身高1.75米,如果人体比例效果最佳的话,应该是该人的腰部到头部的距离和腰部到脚部的距离按0.382和0.618的神奇数字进行黄金分割,人体才对称协调。如果倒过来分割,此人将显得长身子,小短腿,非常不协调。所以该人的腰部到头部的距离最好是0.6685,腰部到脚部的距离最好是1.0815,此人身材看起来非常舒服。试想如果该人的腰部到头部的距离是1.0815,腰部到脚部的距离是0.6685,这人看上去…… 黄金定律对建筑构图、商业网点的设立、体育比赛节奏控制、合理安排学习工作时间等都有黄金神奇的作用。具体运用到股市中,黄金定律也可以作为参考。 一般认为,如果股价上升或下跌到黄金分割区域,则发生变数的概率比较大。波浪理论的上升、下跌幅度,其基本计算依据就是根据黄金定律。 需要注意的是:黄金定律只是一个参考的工具,不能就此武断作出炒股决策,还要参考其他因素和指标。另外,黄金分割点和黄金分割区域是有区别的,不应该教条等待黄金分割点的出现再作出决策,为掌握提前量,实际运用中应该把黄金分割区域的出现作为及时决策的依据。如上面举的人体身材例子,理论上测算该人的腰部到头部的距离最好是0.6685,腰部到脚部的距离最好是1.0815。但是实际中,丝毫不差真正达到此标准的可以说根本不可能。因此,只要此人的腰部到头部的距离大体在0.6685区域,腰部到脚部的距离大体在1.0815区域,就相当标准了,看起来也会非常舒服 股票选择黄金分割线之后,在一只股票的最高点做起点,在最低点停住,所显示的3条线分别显示的是0.618、0.50、0.382的股价价位。 黄金分割线,可以作为股价上涨途中的压力位和支撑位的技术分析参考值。
⑸ 黄金分割比例是多少
黄金分割最早见于古希腊和古埃及。黄金分割又称黄金率、中外比,即把一根线段分为长短不等的a、b两段,使其中长线段的比(即a+b)等于短线段b对长线段a的比,列式即为a:(a+b)=b:a,其比值为0.6180339……这种比例在造型上比较悦目,因此,0.618又被称为黄金分割率。
??黄金分割长方形的本身是由一个正方形和一个黄金分割的长方形组成,你可以将这两个基本形状进行无限的分割。由于它自身的比例能对人的视觉产生适度的刺激,他的长短比例正好符合人的视觉习惯,因此,使人感到悦目。黄金分割被广泛地应用于建筑、设计、绘画等各方面。
??在摄影技术的发展过程中,曾不同程度地借鉴并融汇了其他艺术门类的精华,黄金分割也因此成为摄影构图中最神圣的观念。应用在摄影上最简单的方法就是按照黄金分割率0.618排列出数列2、3、5、8、13、21……并由此可得出2:3、3:5、5:8、8:13、13:21等无数组数的比,这些数的比值均为0.618的近似值,这些比值主要适用于:画面长宽比的确定(如135相机的底片幅面24mmX36mm就是由黄金比得来的)、地平线位置的选择、光影色调的分配、画面空间的分割以及画面视觉中心的确立。摄影构图通常运用的三分法(又称井字形分割法)就是黄金分割的演变,把上方形画面的长、宽各分成三等分,整个画面承井字形分割,井字形分割的交叉点便是画面主体(视觉中心)的最佳位置,是最容易诱导人们视觉兴趣的视觉美点。
??摄影构图的许多基本规律是在黄金分割基础上演变而来的。但值得提醒的是,每幅照片无需也不可能完全按照黄金分割去构图。千篇一律会使人感到单调和乏味。关于黄金分割,重要的是掌握它的规律后加以灵活运用。
⑹ 黄金分割线的百分之五十在什么位置
公元前5世纪,古希腊哲学家、数学家毕达哥拉斯,通过长时间研究铁锤和铁砧的尺寸发现它们之间存在着和谐的比例关系,即1:0.618的比例最为优美。 德国美学家泽辛把这一比例称为黄金分割律。此律的意思是:整体与较大部分之比等于较大部分与较小部分之比(即0.618:1=0.382:0.618),0.618是黄金分割律的比值,它被认为是最美的数值,具有很高的美学价值。 人是自然界长期发展的产物,人体美在自然美中具有最强的完整性。英国大诗人莎士比亚在《哈姆雷特》中赞颂道:“人类是一件多么了不得的杰作!……宇宙的精华、万物的灵长”。其实,莎士比亚也许不知道,人体相关各部分之间是符合黄金分割率的,肚脐是黄金分割线的黄金点。在躯干部分,乳房位置的上下长度比;咽喉至头顶和至肚脐之比;膝盖至脚后跟和至肚脐之比等,都是黄金分割数0.618的近似数。如果人体上述部分比例均符合黄金律的话,就显得协调匀称。古希腊断臂维纳斯、雅典娜女神和“海姑娘”阿曼达,其体型结构比例完全符合黄金律,美妙绝伦。 科学家和艺术家普遍认为,黄金律是建筑艺术必须遵循的规律。在建筑造型上,人们在高塔的黄金分割点处建楼阁或设计平台,便能使平直单调的塔身变得丰富多彩;而在摩天大楼的黄金分割处布置腰线或装饰物,则可使整个楼群显得雄伟雅致。古代雅典的巴特农神殿,当今世界最高建筑之一的加拿大多伦多电视塔,举世闻名的法国巴黎埃菲尔铁塔,都是根据黄金分割的原则来建造的。 在日常生活中,最和谐悦目的矩形,如电视屏幕、写字台面、书籍、衣服、门窗等,其短边与长边之比为0.618,你会因此比例协调而赏心悦目。甚至连火柴盒、国旗的长宽比例设计,都恪守0.618比值。在音乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处;二胡要获得最佳音色,其“千斤”则须放在琴弦长度的0.618处。最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。
手机看片咋么办?搜-酷影模式-几万部岛国电影等着你
⑺ 黄金分割数(一百位)
--------------------------------------------------------------------------------
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
|..........a...........|
+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -
|......b......|..a-b...|
通常用希腊字母 表示这个值。
黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为根号5+1/2
黄金分割数是无理数,前面的1024位为:
1.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922...
⑻ 黄金分割点是多少
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。