導航:首頁 > 金融投資 > 金融公司數據指標

金融公司數據指標

發布時間:2021-05-16 10:08:43

『壹』 找一些金融數據等(可在統計年鑒中找),對數據進行分析,主要做成數據表格,數據圖並計算數據指標(平均

好vsw

『貳』 金融數據是什麼

金融數據是什麼?金融數據是指金融行業所涉及的市場數據、公司數據、行業專指數和定價數據等的統稱屬,凡是金融行業涉及相關的數據都可以歸入金融市場大數據體系中,為從業者進行市場分析提供參考。
以路孚特(前身是湯森路透的金融與風險業務板塊)所提供的金融數據為參考,能夠覆蓋所有主要金融市場(包括股票、固收、商品和外匯等),幫助用戶從海量的數據中尋找到合理有效的數據,並且從中判斷出市場預期發展情況和價值。

『叄』 初次進金融公司做數據分析,急求該行業做excel時常用的函數公式,並展示一下具體操作實例和步驟

含函數講解及實例。僅供參考哦。

『肆』 大數據時代怎麼做好金融行業的指標管理

銀行的指標一向來很多,比如監管指標源、負債指標、效益指標、規模指標等,這些指標都是反應銀行的經營生產狀態,這些指標如果對應不同的業務部門,不同的業務人員,指標的變更、指標應用其實是很麻煩的事情,走流程就要排隊等很久,再要技術人員去調整,然後再根據業務人員的需求,去做指標的應用展示,這個過程的流轉完成,估計新的好幾輪的需求已經又開始了,周而復始,指標一直不能發揮其最大的應用價值。所以需要一款既能做指標的集中管理,又能夠快速相應指標分析的需求的工具,這里傾力推薦億信華辰的指標管理平台(EsPowerIndex),億信華辰深耕BI領域十多年,在銀行領域的經驗也很豐富,在指標建設這塊,也比較有經驗。這款工具能對指標集中進行管理,指標體系可視化,用戶可直觀看到指標一覽表及每個指標的統計方法,數據來源,統計口徑等信息,業務人員也能夠自行維護指標體系,對於體系內的指標變更等,及時響應。同時,指標管理平台中用戶可自主建模,全程可視化界面,引導式操作,同時內置敏捷分析平台,利用敏捷分析平台強大的自助分析功能,用戶能從各個維度,各種可視化方式自由查看自己關心的數據,充分發揮指標體系的最大價值。

『伍』 金融行業大數據怎麼玩

任何數據分析的前提是首先要理解業務模型,從你的金融數據是怎麼產生的,包括哪些指標哪些數據,你的分析是要為什麼業務服務的,也就是你的目的。比如你分析金融數據的目的是要找出最有價值的金融產品,還是最有價值的客戶,還是尋找最有效的成...
在企業信息化建設及互聯網行業的發展過程中,數據量的增長已經達到了前所未有的速度。廠商、分析師以及技術專家認為「大數據」(Big Data)時代已經到來,針對大數據的相關技術已經被IT部門提上了議事日程。除了如何存儲管理大數據,更為重要的問題...
在金融領域大數據用的好還是很不錯的。比如收集股民的投資信息就可以知道大眾的投資走向,你就可以關注這些行業。
實質是資源共享,為單一客戶提供綜合金融服務,說白了就是充分挖掘客戶家底。
大數據對金融行業的影響有很多方面吧,目前大數據的來源主要包括瀏覽、購買、搜索、關注、社交的用戶行為。對於金融行業來說最基本的影響就是對用戶的畫像更加精準了,傳統的數據如年齡職業住址聯系電話等信息自然不在話下,更重要的是對於用戶...
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。 有人把數據比喻為蘊 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大...
說到運用啊,樓主你知道「信誠人壽悅生活愛家行動」活動不,就是和堂傳媒運用了多屏互動手段和大數據手段。以40000+的有效用戶數據打破如今互聯網金融行業營銷記錄,也開創了大數據等技術運用的先河,可牛啦。
讓每一條查詢的關聯度提高,讓每一條查詢的相似查詢結果智能化顯示,人性化的羅列每一次查詢可能對應的結果,比搜索更貼心; 金融業的利率差將會更加復合資本的運作規律:行政化的切割線將會被套利資本沖垮、淹沒,收益率劃分的利率差切割線將會...
:)在我們的生活中,所有人都在製造和分享數據——但並非所有數據都能得到合理使用。這種數據缺乏帶來的信息不對稱,導致了金融行業中「二八定律」的出現。二八定律:在當前利率非完全市場化與小微企業抵押擔保品欠缺的情況下,採用傳統信貸技術從...
大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向

『陸』 如何進行互聯網金融運營數據的分析,都有哪些方法

作者:張溪夢 Simon
鏈接:https://www.hu.com/question/29185414/answer/110954989
來源:知乎
著作權歸作者所有

我們之前做過一期互聯網金融的公開課,「互聯網金融增長寶典:三大步驟提高轉化,搞定用戶運營」,主講人是 GrowingIO 的業務增長負責人徐主峰,曾任職 Criteo、Microsoft 等公司,有豐富的電商、互聯網金融客戶解決方案經驗。 這是公開課的速記整理。
這是一篇互聯網金融寶典,我推薦給所有轉化率只有 1%、總是為誰可能是你的購買用戶而犯愁的互聯網金融的高管、PM、市場運營和銷售們。本文通過實戰案例,手把手教你建立轉化指標、 梳理分析思路、提供分析步驟並最終建立用戶行為分析模型。

文 / 徐主峰

大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?

我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。

一 、互聯網金融用戶四大行為特徵

互聯網金融平台用戶有四大行為特徵:

第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:

而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。

二、互聯網金融用戶運營的三大步驟

針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:

1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
結合典型渠道特點,可以做一個象限圖:
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。

『柒』 看股票業績要看哪些數據指標啊

1、營業收入:一個具有發展潛力的公司,其營業收入必須有快速發展的勢頭。去年賣出 1 億元的產品,今年 2 億,預計明年 4 億。這樣的公司常常提供了股價在短期內翻幾倍的機會。
2、盈利:有些公司做很多生意,就是不賺錢。公司經營的好壞主要以盈利作為衡量的標准, 盈利增加,股價自然上漲。
3、固定資產:固定資產就是公司現有所有的"不動"的資產。如果公司的市場總價是 10 億 元,固定資產是 15 億元,你可以認為股價沒有反映公司的價值,股價偏低了。
4、類似公司的情況:大家都生產類似產品,如電視機,其它公司的績效和這家公司比怎麼樣? 同類公司通常有類似的經濟周期,股價的波動也類似。
5、品牌的價值:你打算投資的這家公司有 無過硬的品牌?這可能對股價有深遠的影響。

更多資料參看我的空間

『捌』 互聯網金融運營需要關注的數據有哪些

由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域 的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。

互聯網金融公司的金融屬性,從經營風險的角度來看,風險貫穿互聯網金融公司的企業日常運營、IT平台運營等過程,這與普通互聯網公司的運營主要關注產品運 營有極大不同,因此以下所指的運營並不單純指普通互聯網公司的運營部門的運營,而是從整個互聯網公司企業運營角度來說的。

根據互聯網共性可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等

運營不要只關注那些數據,數據是外在的,是基礎,而產品和平台核心競爭力才是發展的王道,數據+產品,找到平台最優的發展平衡點,才是運營下的這盤棋的目的。

『玖』 金融指標有哪些哪些指標適合做數據分析

金融指標很多的,mydfin.com這個網站首頁全是,很全的,不用到處找!

『拾』 金融行業有哪些領域需要大量運用數據分析

1.宏觀經濟分析:國內外宏觀經濟數據分析、政策走勢分析、經濟形勢分析。
2.證券數據內分容析:通過建立數據模型,分析股票指數數據,預測股票走勢。
3.財務報表分析:通過建立分析模型,分析財務狀況,關聯公司之間的經濟往來情況。
4.投資項目評估:多維度分析投資項目,通過數據進行投資決策支持,減少投資風險。

閱讀全文

與金融公司數據指標相關的資料

熱點內容
260108基金今天凈 瀏覽:647
貸款提車上路需要多久 瀏覽:383
證券咨詢公司的投資顧問 瀏覽:382
杭州南海成長股權基金 瀏覽:373
合肥鑫匯金投資管理有限公司 瀏覽:671
基金控庄的股有什麼特點 瀏覽:958
醫院股權融資 瀏覽:245
信託產品圖片 瀏覽:201
中原高速03月07日資金揭秘 瀏覽:515
怎麼買萬達股票 瀏覽:306
湖南源匯信託 瀏覽:891
汽車融資網站 瀏覽:747
外匯價1美元人民幣 瀏覽:649
方正科技股票價格 瀏覽:802
景順長城動力混合基金凈值 瀏覽:59
證券期貨違法違規舉報中心 瀏覽:388
孔門的理財 瀏覽:116
鼎融資本收益怎麼樣 瀏覽:305
融資價格是什麼 瀏覽:564
新基金封閉期不能贖回 瀏覽:789