導航:首頁 > 基金投資 > 大數據對投資的影響

大數據對投資的影響

發布時間:2021-06-26 03:15:19

Ⅰ 談談大數據帶來的影響有哪些

大數據時代,對人們生活的影響

最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」

Gartner給出了這樣的定義:「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

維克托·邁爾舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。

一個最經典的案例是沃爾瑪曾經做過的「啤酒」和「尿布」調研:沃爾瑪在研究中發現,一類顧客經常在購買尿布的同時也購買啤酒。看似毫無關聯的兩個品類的商品其實是一類社會現象所導致的,有很多年輕夫婦女主人在家帶孩子,而男主人就去超市買尿布,通常會順帶著買些啤酒。

1、幫助企業提升營銷的針對性,降低物流和庫存的成本,減少投資的風險,以及幫助企業提升廣告投放精準度;

2、幫助城市預防犯罪,實現智慧交通,提升緊急應急能力;

3、幫助電商公司向用戶推薦商品和服務,幫助旅遊網站為旅遊者提供心儀的旅遊路線,幫助二手市場的買賣雙方找到最合適的交易目標,幫助用戶找到最合適的商品購買時期、商家和最優惠價格

4、幫助醫療機構建立患者的疾病風險跟蹤機制,幫助醫葯企業提升葯品的臨床使用效果,幫助艾滋病研究機構為患者提供定製的葯物;

5、幫助政府實現市場經濟調控、公共衛生安全防範、災難預警、社會輿論監督。

數據經常可以讓你發現看似不合理不合邏輯但卻存在,並且經常發生的現象。以上就是億美軟通在現實生活中對大數據的具體表現做的整理。

未來大數據的身影應該無處不在,就算無法准確預測大數據終會將人類社會帶往到哪種最終形態,相信大數據的變革的不會止步。

大數據時代,對人們生活的影響在哪些方面

大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。

Ⅱ 請從消費、投資理財和創業角度,分析大數據對個人的經濟生活可能帶來的積極影響

大數據對於消費、投資理財和創業來說,可以增加准確性,精確度。因為大數據,通過後台,如分類統計,並進行分析,了解人們的需求,然後採用滿足這些需求的措施,有助於資源的整合、以免造成浪費。

Ⅲ 大數據時代的影響

現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。著雲台的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。
「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量。
大數據到底有多大?一組名為「互聯網上一天」的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當於美國兩年的紙質信件數量);發出的社區帖子達200萬個(相當於《時代》雜志770年的文字量);賣出的手機為37.8萬台,高於全球每天出生的嬰兒數量37.1萬……
截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表明,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量更是高達1.82ZB,相當於全球每人產生200GB以上的數據。而到2012年為止,人類生產的所有印刷材料的數據量是200PB,全人類歷史上說過的所有話的數據量大約是5EB。IBM的研究稱,整個人類文明所獲得的全部數據中,有90%是過去兩年內產生的。而到了2020年,全世界所產生的數據規模將達到今天的44倍。 每一天,全世界會上傳超過5億張圖片,每分鍾就有20小時時長的視頻被分享。然而,即使是人們每天創造的全部信息——包括語音通話、電子郵件和信息在內的各種通信,以及上傳的全部圖片、視頻與音樂,其信息量也無法匹及每一天所創造出的關於人們自身的數字信息量。
這樣的趨勢會持續下去。我們現在還處於所謂「物聯網」的最初級階段,而隨著技術成熟,我們的設備、交通工具和迅速發展的「可穿戴」科技將能互相連接與溝通。科技的進步已經使創造、捕捉和管理信息的成本降至2005年的六分之一,而從2005年起,用在硬體、軟體、人才及服務之上的商業投資也增長了整整50%,達到了4000億美元。 大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。
A.不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制);
B.不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可,適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力;
C.不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,我們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴我們某件事情為何會發生,但是它會提醒我們這件事情正在發生。 大數據時代,什麼最貴?
十年前,葛大爺曾說過,「21世紀什麼最貴?」——「人才」,深以為然。只是,十年後的今天,大數據時代也帶來了身價不斷翻番的各種數據。由於急速拓展的網路帶寬以及各種穿戴設備所帶來的大量數據,數據的增長從未停歇,甚至呈井噴式增長。
一分鍾內,微博推特上新發的數據量超過10萬;社交網路「臉譜」的瀏覽量超過600萬……
這些龐大數字,意味著什麼?
它意味著,一種全新的致富手段也許就擺在面前,它的價值堪比石油和黃金
事實上,當你仍然在把微博等社交平台當作抒情或者發議論的工具時,華爾街的斂財高手們卻正在挖掘這些互聯網的「數據財富」,先人一步用其預判市場走勢,而且取得了不俗的收益。
讓我們一起來看看——他們是怎麼做的。
這些數據都能幹啥。具體有六大價值:
●1、華爾街根據民眾情緒拋售股票
●2、對沖基金依據購物網站的顧客評論,分析企業產品銷售狀況;
●3、銀行根據求職網站的崗位數量,推斷就業率;
●4、投資機構搜集並分析上市企業聲明,從中尋找破產的蛛絲馬跡;
●5、美國疾病控制和預防中心依據網民搜索,分析全球范圍內流感等病疫的傳播狀況;
●6、美國總統奧巴馬的競選團隊依據選民的微博,實時分析選民對總統競選人的喜好。 「數據是新的石油。」亞馬遜前任首席科學家Andreas Weigend說。Instagram以10億美元出售之時,成立於1881年的世界最大影像產品及服務商柯達正申請破產。
大數據是如此重要,以至於其獲取、儲存、搜索、共享、分析,乃至可視化地呈現,都成為了當前重要的研究課題 。
「當時時變幻的、海量的數據出現在眼前,是怎樣一幅壯觀的景象?在後台注視著這一切,會不會有接近上帝俯視人間星火的感覺?」
這個問題我曾請教過劉建國,中國著名的搜索引擎專家。劉曾主持開發過國內第一個大規模中英文搜索引擎系統「天網」。
要知道,劉建國曾任至網路的首席技術官,在這樣一家每天需應對網民各種搜索請求1.7億次(2013年約為8.77億次)的網站中,如果只是在後台靜靜端坐,可能片刻都不能安心吧。網路果然在提供搜索服務之外,逐漸增添了網路指數,後又建立了基於網民搜索數據的重要產品「貼吧」及網路統計產品等。
劉建國沒有直接回答這個問題,他想了很久,似乎陷入了回憶,嘴角的笑容含著詭秘。
倒是有公司已經在大數據中有接近上帝俯視的感覺,美國洛杉磯就有企業宣稱,他們將全球夜景的歷史數據建立模型,在過濾掉波動之後,做出了投資房地產和消費的研究報告。
在數據可視化呈現方面,我最新接收到的故事是,一位在美國思科物流部門工作的朋友,很聰明的印度裔小夥子,被Facebook高價挖角,進入其數據研究小組。他後來驚訝地發現,裡面全是來自物流企業、供應鏈方面的技術人員和專家,「Facebook想知道,能不能用物流的角度和流程的方式,分析用戶的路徑和行為。」

Ⅳ 大數據帶來的大影響

大數據帶來的大影響_數據分析師考試

如果把「數據化」視為信息社會的初級階段,則名不見經傳的英國科學家維克托·邁爾-舍恩伯格,用他別具洞見的天才新著《大數據時代》首次告訴我們:人類正在進入「數據顛覆傳統」的信息社會中級階段。

在此階段,信息無所不在無所不包,其無限膨脹的天文海量催生了「統計+分類-推理分析=決策」的計算機處理程序(有點像刷卡消費一步到位,節省了算賬找補等繁瑣環節),悄然挑戰「去粗取精、去偽存真、由表及裡、由此及彼」的傳統認識論模式,冥冥之中潛移默化,對我們的生活、工作與思維,對人類「階級斗爭、生產斗爭、科學試驗」三大實踐活動產生著重大而深刻的影響。

大數據點燃

美國政府曾為定期公布消費物價指數CPI以監控通脹率,僱用了大量人員向全美90個城市的商店、辦公室進行電話、傳真拜訪,耗資2.5億美元搜集反饋8萬種商品價格的延時信息。然而麻省理工學院兩位經濟學家採取「大數據」方案,通過一個軟體在互聯網上每天搜集50萬種商品價格即時信息。2008年9月雷曼兄弟公司破產後,該軟體馬上發現了通脹轉為通縮的趨勢,而官方數據直到11月才發現。之後該軟體被暢銷到70多個國家。這一案例充分體現出「大數據」顛覆傳統的力量和變革思維的智慧。

「小數據」時代追求精準,竭力避免不精準信息誤導誤判。然而95%被傳統資料庫拒絕接受的非結構化(非標准)數據,在「大數據」時代的模糊化資料庫中發揮了重要的作用,因為數據越模糊越全面,才能有效避免誤導誤判。

從因果關繫到相關關系的思維變革,是「大數據」顛覆傳統認識論模式的關鍵。電腦畢竟不是人腦,電腦永遠搞不懂氣候與機票價格之間有什麼因果關系。公雞打鳴和天亮之間雖無因果關系,但古人通過公雞打鳴來預報天亮卻很少失敗。「如果數百萬條醫療記錄顯示橙汁和阿司匹林的特定組合對癌症治療有效果,那就用不著通過一次次實驗來探索其具體的葯理機制了」。「蘋果之父」喬布斯就主動試用過一些醫療記錄有效但未經臨床驗證的療法同癌症抗爭。你可以嘲笑喬布斯「不講科學」,但他卻因此多活了好幾年。

從根本上說,所謂「大數據挑戰傳統認識論」,其實是人類把復雜的認識過程「全部打包」給了電腦,而電腦懶得分析推理驗證,只通過統計分類對比,交出「最終答案」就OK了。大數據的精髓在於變「少而精」為「多而全」,變「因果」為「相關」。當實地調研開始被數據採集所替代,當嚴密的實驗開始被非線性邏輯所替代,當「唯一真理」開始被多項選擇所替代,「大數據」就用事實向人類宣告:「知其然不知其所以然」,既是電腦望塵人腦的劣勢,也是電腦超越人腦的優勢!

大數據滲透大世界

不要以為「大數據」只是科幻故事或政府與科學家的「專利」。環顧四周,「大數據」早已滲透我們生活和工作的方方面面,衍生出形形色色的數據超市、數據易趣、數據交友、數據聯誼、數據作坊、數據課堂、數據IB等傳奇版本。從治安管理、交通運輸、醫療衛生、商業貿易、批發零售、公益救援直到政治、軍事、經濟、金融、社會、環境、文藝、體育。

UPS國際快運公司從2000年開始通過「大數據」檢測其遍布全美的6萬輛貨車車隊,統計出各損耗零部件的生命周期,改「備份攜帶」為提前更換,有效預防了半路拋錨造成的嚴重麻煩和巨大損失,每年節省數百萬美元。UPS還依靠「大數據」優化行車路線(例如盡量右轉彎,避免左轉彎),2011年全公司車輛少跑4828萬公里,節省燃料300萬加侖,減少碳排放3萬公噸。

為紐約提供電力支持的愛迪生電力公司,針對每年多起電纜沙井蓋爆炸造成嚴重事故,採取「大數據」手段統計出106種預警先兆,預測2009年可能出事的沙井蓋並嚴加監控。結果位列前十分之一的高危井蓋中,預測准確率達44%。

美國里士滿市警察當局憑經驗認定槍擊事件往往導致犯罪高峰期,「大數據」證明這種高峰期往往出現在槍擊事件後2周左右。孟菲斯市2006年啟動「大數據」系統鎖定了更容易發生犯罪的地點和更容易抓捕罪犯的時間,使重大犯罪發生率下降26%。

沃爾瑪2004年依靠「大數據」發現了颶風前夕銷量增加的各類商品,進而每逢預報便及時設立颶風用品專區,並將手電筒、早餐零食蛋撻等擺放於專區附近,明顯增加了「順便購買」的銷量。

至於「大數據」的經濟價值,僅需略舉數例:2006年微軟以1.1億美元購買了埃齊奧尼的Farecast公司,2008年穀歌以7億美元購買了為Farecast提供數據的ITA Software公司。同年在冰島成立的DataMarket網站乾脆專靠搜集提供聯合國、世界銀行、歐盟統計局等權威機構的免費信息來獲利生存,包括倒賣各類研究機構公開發布的研究數據——只要找到買主,往往願出高價!

大數據創造大金融

金融領域當然是「大數據」的主戰場之一。程序化交易也許是現今最主要的「大數據」新式武器。美國股市每天成交量高達70億股,但其中三分之二的交易量並非由人操作,而是由建立在數學模型和演算法之上的計算機程序自動完成。日新月異的程序化交易只能運用海量數據來預測收益、降低風險。幾乎所有銀行、券商、保險、期貨、QFII和投資公司都開發了自己的程序化交易工具。誰的武器更先進?競爭到最後恐怕還是比誰搜集處理的數據更海量。

一家投資基金通過統計大商場周邊停車場及路口交通擁擠狀況,來預測商場經營及當地經濟狀況,進而預測相關股價走勢,最後居然拿數據統計資料換得了該商場的部分股權。

不少對沖基金通過搜集統計社交網站推特上的市場心情等信息來預測股市的表現。倫敦和加利福尼亞的兩家對沖基金,利用「大數據」形成119份表情圖和18864項獨立的指數,向許多客戶推銷股市每分鍾的「動態表情」:樂觀、憂郁、鎮靜、驚恐、呆滯、害怕、生氣、激憤等,以幫助和帶動投資決策。

金融機構競相拉客理財的今天,如果能及時搜集處理海量的微博、微信、簡訊,自然也能從茫茫人海中及時發現怦然心動打算開戶的,或一氣之下打算「跳槽」的投資者。

當然,如果投資者都能通過「大數據」直接決策,將「刷卡消費」拓展成「刷卡投資」,那藏龍卧虎的分析師群體和爭雄斗妍的研究報告未來還有市場嗎?

大數據暗藏大隱患

像所有新生事物一樣,大數據也是一把雙刃劍。宏觀上看,「大數據」在各個不同的領域將人類虛擬分割為「數據化」與「被數據化」兩大陣營。持續發酵的「棱鏡門」事件披露了美國政府長期監控全世界的「最高機密」,但美國總統、國會和政府都認定這種監控「天經地義」,是「維護國家核心利益」。雖然社會早已建立起龐大的法律法規體系來保障個人信息安全,但在「大數據」時代,這些體系正蛻變為固若金湯但可以隨意繞過的「馬其諾防線」。

「大數據」導致個人信息被交易、個人隱私被外泄還不算,更大的危險在於「個人行為被預測」。正如作者預言——「這些能預測我們可能生病、拖欠還款甚至犯罪的演算法程序,會讓我們無法購買保險、無法貸款,甚至在犯罪實施前就預先被逮捕」——也許你認為這對全社會來說無疑是好事。可是如果預測系統不完善、軟硬體出差錯、數據搜集處理不當、臨時數據未經檢驗、黑客攻擊、有人惡意或善意開玩笑製造假信息……導致你、你的家庭、你的親朋好友、你的所在單位甚至你的祖國被冤枉被制裁,你還能無動於衷嗎?

微觀上看,即使是出於正當目的採集的「大數據」,仍可能在「擴展開發」過程中產生無法想像的副作用。例如谷歌的街景拍攝和GPS數據為衛星定位和自動駕駛儀提供了關鍵的支持,但同時因其有助於黑幫盜賊便捷挑選有利目標而引發了多國民眾的強烈抗議。當谷歌對圖像背景上的業主房屋、花園等目標進行模糊化處理後,反而引起盜賊更加註意。

無論你驚奇還是恐懼,歡迎還是躲避,關注還是漠視,理解還是拒絕,「大數據」都在加快步伐向我們走來。我們只有順勢而為,趨利避害,才不至於被這個充滿機遇和挑戰的新時代提前淘汰。

以上是小編為大家分享的關於大數據帶來的大影響的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅳ 將大數據技術運用於投資靠譜嗎

我覺得還是挺靠譜的。比如,我們可以將投資者行為數據化,這種技術可以更為直接和精準的體現出投資者對於行業的關注程度等等。比如,現在的大數據技術已經可以運用於風投行業資料庫了。據我所知,投中信息研發的CVSource就是通過網路採集、調研訪問、數據合作等多種渠道保證數據的完整性,還利用大數據分析挖掘技術與人工運營相結合的方式保證數據的准確與更新的及時。因此,我覺得大數據技術運用於風投行業還是很有發展前景的。

Ⅵ 大數據應用對VC行業來說是一個好的趨勢嗎

大數據對VC還是有明顯影響的,以互聯網領域的投資為例,因為這個行業裡面已經有很多結構化的數據,無論投資人是什麼背景,都可以快速的找到一個細分行業的方法。這是現在數據對整個VC行業變化的影響,還是挺明顯的。
另外,前瞻產業研究院認為,大數據能夠讓創業者們獲得公平的展示機會,讓他們的項目能夠更好地呈現在投資人面前:大數據的發展會讓大家的創業機會非常公平的展現出來。大家只要專注在產品上,大數據會把VC行業裡面很多的東西推平,會讓你們公平地獲得展示和吸引投資的機會,這是一個好的趨勢。
盡管大數據也許即將會成為投資風口,但它未必能完全取代傳統人工的作用。我們看的很多項目,都會涉及大數據,它們對行業本身會有很大的推動作用,但VC行業是非常專業的活動,在這方面,經驗積累真的很重要。才做了三個月的風投機構和做了15年的風投機構,兩者之間對於信息的挖掘能力,以及對一個項目局面的掌控力,是很難同日而語的。這些經驗只能意會不可言傳。

Ⅶ 大數據對投資管理的影響

正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就
是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢
一方面,
金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;
另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。

總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展
帶來重要機遇。

首先,
大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境
下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。

其次,
大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。
此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,
大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業
務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。
目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、
納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。
一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。

Ⅷ 大數據適合投資學專業嗎

大數據就是趨勢,汽車行業這兩年的進步和發展,你可以投資學習一項技術,只要想學習,什麼時候都不晚

Ⅸ 大數據時代的到來對經濟學有什麼影響

在互聯網日益發展壯大後,隨即迎來是大數據時代,本人認為,大數據時代對經濟學有著雙重影響。首先了解一下什麼是大數據時代。

最早提出"大數據"時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:"數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。" "大數據"在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。

所以在大數據來臨時代,我們應該積極適應,作為企業來說應該重視大數據技術 、培訓企業的員工 。所以我認為,大數據時代對經濟學只有積極影響,我們應該緊跟時代步伐,積極配合大數據時代,隨著大數據時代對經濟學的影響,我們應該更加重視經濟學,努力學習經濟學。

閱讀全文

與大數據對投資的影響相關的資料

熱點內容
草根創業是拿不到天使投資的 瀏覽:659
乙二醇期貨庫存 瀏覽:91
南京醫葯股票怎麼樣 瀏覽:386
股票換手率高好不好 瀏覽:654
易方達5G概念基金有哪些 瀏覽:526
富國文體健康股票基金凈值 瀏覽:805
4萬5美金多少人民幣匯率 瀏覽:46
新興股票市場 瀏覽:33
融出資金業務 瀏覽:954
美元人民幣匯率2019年4月29日 瀏覽:857
網信理財卷碼 瀏覽:774
東方融匯理財 瀏覽:492
創業慧康的投資價值 瀏覽:753
1分鍾買漲跌的外匯騙局 瀏覽:289
桔子理財違約 瀏覽:46
北京金鴻德投資 瀏覽:630
2013年我國的外匯儲備 瀏覽:919
人民幣升值對中國對外投資 瀏覽:335
建行理財流 瀏覽:994
武漢融資網 瀏覽:213