導航:首頁 > 黃金交易 > 黃金分割及其應用論文

黃金分割及其應用論文

發布時間:2021-06-09 01:02:47

『壹』 黃金分割在生活中的應用的論文怎麼寫

黃金分割在生活中的應用的論文
偶在寫的時候,都是有人指導的,你可以去找客服幫您一下。

我知道一家,他們的文章不錯,免費指導您寫作,也會為您推薦優秀資料.

加為好友就行
:四







『貳』 關於數學黃金分割的小論文500字

黃金分割漫談

分已知線段為兩部分,使其中一部分是全線段與另一部分的比例中項,這就是在中學幾何課本中提到的黃金分割問題。若C為線段AB的滿足條件的分點,則可求得AC 約為 0.618AB。這個分割在課本上被稱作黃金分割,我們有時也可說是將線段分成中末比、中外比或外內比。若用G來表示它,G 被稱為黃金比或黃金分割數。黃金分割、黃金分割數都被冠以「黃金」二字,說明了它們的重要性與應用上的廣泛性,同時也為它們平添了幾分神秘的色彩。著名天文學家開普勒稱黃金分割是「幾何學中的一大寶藏」,就讓我們揭開它的神秘面紗,共同來開采一下這座寶藏吧!

尋蹤探跡話名稱由來

最早對中末比有所了解的大約可追溯到畢達哥拉斯學派。該學派對正五邊形、正十邊形都很熟悉,並且把「五角星」作為成員聯絡標記,而這些圖形的作法與中末比是密切聯系的。如果相信畢達哥拉斯熟知正五邊形與五角星的作圖,那麼可以推知他已掌握了中末比。古希臘著名的數學家、天文學家歐多克索斯最早對中末比做了系統的研究,他在深入探究五角星性質時,曾驚嘆道:「中末比到底在這兒出現了!」對中末比的嚴格論述最早見於歐幾里德的《幾何原本》。到中世紀以後,中末比被披上更神秘的外衣,漸漸籠上了一層神秘的色彩。

文藝復興時期,中末比問題引起了人們廣泛的注意。1509年,義大利文藝復興重要人物之一帕喬里出版《神聖的比例》一書。書中系統介紹了古希臘中外比,並稱其為神聖比例。他認為世間一切事物都須服從這一神聖比例的法則。開普勒稱中末比為「比例分割」,他寫道:「畢達哥拉斯定理和中末比是幾何中的雙寶,前者好比黃金,後者堪稱珠玉。」他是把黃金之喻給了畢達哥拉斯定理,而用珠玉來形容了中末比。最早正式在書中使用黃金分割這個名稱的是歐姆(以歐姆定律聞名的G.S.歐姆之弟)。在他1835年出版的第二版《純粹初等數學》一書中首次使用了這一名稱。到19 世紀以後,這一名稱才逐漸通行起來,成為現在人們所熟知的名稱。

掛一漏萬談奇妙性質

黃金分割數G有著許多有趣的性質。最引人注目的是它與斐波那契數列的關系。

斐波那契是中世紀著名的學者。他在《算盤書》一書中提出了一道有趣的「兔子生殖問題」,由此引出了一個奇妙數列:

1,2,3,5,8,13,21,34,55,89,144,……

規律是:從第三項開始每一項是前兩項之和。後人稱為斐波那契數列。它與黃金分割會有什麼關系呢?

讓我們計算一下斐波那契數列中每前一項與後一項之比,就會發現這個比值竟與黃金分割數G越來越接近,完全可以作為G的一階、二階……N階近似。多麼奇妙啊!其實可以證明這些比值正是以G作為它們的極限。

中外比與斐波那契數列的這種內在聯系,為它大添了光彩,也使它具有了一種特殊的神秘感與迷人的魅力,使後來的許多數學家為之傾倒。

拋磚引玉粗說影響及應用

黃金分割無論是在理論上,還是實際生活中都有著極其廣泛而又非常簡單的應用,從而也在歷史上產生了巨大的影響。古代,中末比主要是作為作圖的方法而使用。到文藝復興時期它又重新引起了當時人們的極大興趣與注意,並產生了廣泛的影響,得到了多方面的應用。如在繪畫、雕塑方面,畫家、雕塑家都希望從數學比例上解決最完美的形體,它的各部分的相互關系問題,以此作為科學的藝術理論用來指導藝術創造,來體現理想事物的完美結構。著名畫家達芬奇在《論繪畫》一書中就相信:「美感完全建立在各部分之間神聖的比例關繫上,各特徵必須同時作用,才能產生使觀眾如醉如痴的和諧比例。」在這一時期,藝術家們自覺地被黃金分割的魅力所誘惑而使數學研究與藝術創作緊密地結合起來,並對後來形式美學與實驗美學產生了巨大影響。

十九世紀,德國美學家蔡辛提出黃金分割原理且對黃金分割問題進行理論闡述,並認為黃金分割是解開自然美和藝術美奧秘的關鍵。他用數學比例方法研究美學,啟發了後人。德國哲學家、美學家、心理學家費希納進行了實驗美學的嘗試,把黃金分割原理建立在廣泛的心理學測試基礎上,將美學研究與自然科學研究結合在一起,引起廣泛的注意。直到本世紀50年代,實驗美學的研究還十分活躍。直到最近,黃金分割原理仍然是一個充滿了神奇之謎的科學美學問題。如在晶體學的准晶體結構研究領域中,黃金分割問題重新引起了物理學家和數學家們的興趣。

它的實際應用,也有很多。最廣為人道的例子是優選學中的黃金分割法,它是美國的基弗於1953年首先提出的。從1970年開始在我國推廣並取得了很大的成績。優選法的另一種方法――分數法,是取G的分數近似值,在實際中同樣有著廣泛應用。

真真假假道神秘傳說

由於中末比具有各種獨特的性質,隨著它的影響越來越大,也就有了越來越多的關於它的傳說。這些傳說虛虛實實,令人撲朔迷離難辨真偽,但卻一直為人們所津津樂道,廣為流傳。

有人研究得出黃金分割是人和動植物形態的一個結構原則。於是有了以下各種說法:

人體自身美,即人體最優美的身段遵循著G這個黃金分割比。據說在人們並未認識黃金分割之前製造的美的物品竟都恰好與黃金律暗合。如著名的愛神維納斯與女神雅典納的雕像下身與全身之比近於G。

據說芭蕾舞藝術的魅力也離不開G。芭蕾演員起舞時踮起腳尖,是為了展現符合G的身段比例的最優美的藝術形象。

在自然界中,G也是美的重要規律。據說特別令人心曠神怡的花,憑借的是G這個美的密碼。

另外我們知道現在各國的國旗上,凡是「星」幾乎無例外都畫成五角星,據說就是因為五角星中多處暗含了G這個美的密碼,從而使這個圖形賞心悅目。

還據說報幕員處於黃金分割點處的位置時,會給觀眾留下一個美的印象。甚至有人說演奏弦樂器時,把「千斤」放在琴弦的黃金分割點獲得的音色更優美和諧。

還有一種流行極廣的說法是:黃金矩形(即兩邊的比等於G的矩形)比用任何其他比值作邊的矩形都要美觀。1876年,費希納曾為此作過大規模的試驗。結果表明喜歡黃金矩形的人數佔全體的三分之一,在各種矩形中得票最多。

諸如此類的傳說恐怕還有很多。一句話:哪裡有G,哪裡就有了美。黃金分割數G成了宇宙的美神!

『叄』 以「黃金分割在攝影中的應用」為題寫一篇5000字的論文

5000字的哦,
這個不,多啊,
看您,有 做的,要求不》

『肆』 求一篇關於《黃金分割》的論文

黃金分割點在現實生活中的應用論文

希臘的自然科學研究影響西方文化和文明的發展,他們重視分析、分解、假設、推理、推導、實驗、驗證等思維方式。這與東方重視整體、模糊處理、直覺綜合、和諧大同、「仁者愛人」等思維方式和思想有明顯的差別。胡適在「中國的文藝復興」一文中說「當孟子在對人性的內在美德進行理論探討時,歐幾里德正在完善幾何學,正在奠定歐洲的自然科學的基礎。」這種說法不全面,東方的中華文明有過比西方更輝煌的歷史,但在五百多年來,西方經歷了繼承希臘的文藝復興和工業革命,使科學和技術快速發展,而中國因封建統治和閉關鎖國等原因而衰落。現在應該擷取東西方文明的長處,把它們整合起來,創建中華夏興。
「科學中的美和美的科學」,早期屬於自然哲學,自古希臘人開始研究,至今約有2500年。古希臘人喜歡抽象研究。抽象研究又分為邏輯推理研究和形象推理研究,後者所用的工具有直尺和圓規。代數和平面幾何為兩者的典型代表。
曾提出這樣一個問題:「一根棍從哪裡分割最為美妙?」答案是:「前半段與後半段之比應等於後半段與全長之比」。設全長為1,後半段為x,此式即成為(1-x):x=x:1,也就是X2+X-1=0。其解為:。棍內分割只能取正值,此值就是著名的黃金分割比值G, G=0.618033988≈0.618。而且G(1+G)=1,即G和(1+G)互為倒數。
偏有一些古希臘人想用形象方法解決黃金分割問題,並獲得漂亮的結果。歐幾里德(約公元前330-257年)總結了前人的經驗和研究成果,編著了《幾何原理》十三卷。這是世界上最早用公理方法敘述的數學著作。其中所載的黃金分割幾何問題已引起廣泛的興趣,在科學、藝術、建築、技術各領域有著廣泛的應用,哲學家和美學家也曾反復討論,不斷有文章發表。
自然界的形成、運行、演化、生長、繁衍、消亡等都是有規律的,有些物體可以直接感到自然美,但更多的物體令人迷惑不解。我們深信「天道崇美」,但需要人去探究,揭露其規律,使人感受到深層次的自然美和科學美。這就是「因人而彰」。黃金分割律,就是想梳理和探討這種自然美和科學美。人有愛美的天性,而且人本身也是很精美的。「天道崇美,人性好美」有普遍性,無論是天然物品還是人工製品,形態的醜陋必然表明其功能的缺陷,而某些功能的完美,往往伴隨著美的外形.

『伍』 生活中的黃金分割的研究論文

黃金分割在生活中的應用論文 美國著名心理學家布魯納指出:「學習者不應是信息的被動接受者,而應是知識獲取過程的主動參與者。」在數學實踐活動課的教學中,就應堅持以生為本的育人原則,充分挖掘每個學生的潛能,讓學生通過觀察、操作、分析、討論、交流、猜測、合作等學習方式,引導學生自主學習,激發學生學習數學的興趣,促進學生主動地、富有個性地學習,使學生真正成為學習的主人。 我們常常聽說有「黃金分割」這個詞,「黃金分割」當然不是指的怎樣分割黃金,這是一個比喻的說法,就是說分割的比例像黃金一樣珍貴。那麼這個比例是多少呢?是0.618。人們把這個比例的分割點,叫做黃金分割點,把0.618叫做黃金數。並且人們認為如果符合這一比例的話,就會顯得更美、更好看、更協調。在生活中,對「黃金分割」有著很多的應用。 曾經,美國科學家在對人類認識能力的研究中發現,讓一個只有6個月大的嬰兒看幾幅不同的女性照片時,嬰兒會長時間地盯住其中那幅最漂亮的女性的照片看並開心地笑,而讓他看比較丑的照片時,他不僅不愛看甚至會哭泣。當然,這所謂的「漂亮」、「丑」是以已經有了一定的審美能力的成年人的標准來說的,當然也是符合形式美的標準的。這里就出現了一個問題,剛剛出生幾個月大的嬰兒為什麼會與成年人(受過各種教育)在對形式美的選擇上是相同的?這是不是說明了的確存在某種對人類來說永恆的、不以人的意志為轉移的一些最基本的標准支配人的審美活動?如果存在的話,它對似乎已經被學術界公認為無法解決(或者說是無效的問題)的美學的千年難題——美的本質問題——的討論,會有什麼樣的啟發?我們試圖通過對同樣在歷史上被認為是一個「神秘」現象的「黃金分割」比例問題進行分析,對這個題目加以研究。 經過一個學期的學習和研究,我在其中得到了很多知識。由於人們對自然界的認識日益深入,人類關於「黃金分割比」這一比例的了解也越來越豐富。 黃金分割的歷史:人們認為,黃金分割作圖與正五邊形、正十邊形和五角星形的作圖有關——特別是由五角星形作圖的需要引起的。五角星形是一種很耐人尋味的圖案,世界許多國家國旗上的「星」都畫成五角形。現今有將近40個國家(如中國、美國、朝鮮、土耳其、古巴等等)的國旗上有五角星。為什麼是五角而不是其他數目的角?也許是古代留下來的習慣。五角星形的起源甚早,現在發現最早的五角星形圖案是在幼發拉底河下游馬魯克地方(現屬伊拉克)發現的一塊公元前3200年左右製成的泥板上。古希臘的畢達哥拉斯學派用五角星形作為他們的徽章或標志,稱之為「健康」。可以認為畢達哥拉斯已熟知五角星形的作法,由此可知他已掌握了黃金分割的方法。現在人一般認為,黃金分割是由公元前6世紀的畢達哥拉斯發現的。 系統論述黃金分割的最早記載是歐幾里得的《幾何原本》,在該書第四卷中記述了用黃金分割作五邊形、十邊形的問題。 黃金分割的應用與我們的生活息息相關,無論在美學、人體、戰爭、建築、飲食、音樂還是衣著中有著很大的關聯。例如:在音樂中,《降D大調夜曲》是三部性曲式。全曲不計前奏共76小節,理論計算黃金分割點應在46小節,再現部恰恰位於46小節,是全曲力度最強的高潮所在,真是巧奪天工。我們再舉一首大型交響音樂的範例,俄國偉大作曲家裡姆斯-柯薩科夫在他的《天方夜譚》交響組曲的第四樂章中,寫至辛巴達的航船在洶涌滔天的狂濤惡浪里,無可挽回地猛撞在有青銅騎士像的峭壁上的一剎那,在整個樂隊震耳欲聾的音浪中, 樂隊敲出一記強有力的鑼聲,鑼聲延長了六小節,隨著它的音響逐漸消失,整個樂隊力度迅速下降,象徵著那艘支離破碎的航船沉入到海底深淵。在全曲最高潮也就是"黃金點"上,大鑼致命的一擊所造成的悲劇性效果懾人心魂。 貝多芬《悲愴奏鳴曲》Op.13第二樂章是如歌的慢板,迴旋曲式,全曲共73小節。理論計算黃金分割點應在45小節,在43小節處形成全曲激越的高潮,並伴隨著調式、調性的轉換,高潮與黃金分割區基本吻合。 黃金律歷來被染上瑰麗詭秘的色彩,被人們稱為"天然合理"的最美妙的形式比例。世界上到處都存在數的美,對於我們的眼睛,尤其是對我們學習音樂的人的耳朵來說,"美是到處都有的,不是缺乏美,而是缺少發現"。 想像一下如何讓一根很普通的細橡皮筋發出「哆來咪」的聲音?把它拉緊,固定住,撥動一下,就是「1」,然後量出其長,作一道初三幾何題——把這條「線段」進行黃金分割, 可以測出「分割」得到的兩條線段中較長的一段,約是原線段長度的0.618倍。捏住這個點,撥動較長的那段「弦」,就發出「2」;再把這段較長線進行黃金分割,就找到了「3」, 以此類推「4、5、6、7」同樣可以找到。 我國一位二胡演奏家在漫長的演奏生涯中發現 ,如果把二胡的「千斤」放在琴弦某處,音色會無與倫比的美妙。經過數學家驗證,這一點恰恰是琴弦的黃金分割點0.618!黃金比值,在創造著奇跡! 偶然嗎?不,在人們身邊,到處都有0.618的「傑作」:人們總是把桌面、門窗等做成長方形、寬與長比值為0.618。在數學上,0.618更是大顯神通。0.618,美的比值、美的色彩、美的旋律,廣泛地體現在人們的日常生活中,與人們關系甚密。0.618,奇妙的數字!它創造了無數的美,統一著人們的審美觀。 我們要首先感受並體會到數學學習中的美。數學美不同於其它的美,這種美是獨特的、內在的。這種美,正如英國著名哲學家、數理邏輯學家羅素所說:「數學,如果正確地看它,不但擁有真理,而且也具有至高無上的美,正象雕刻的美,是一種冷而嚴肅的美。這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂那樣華麗的服飾,它可以純凈到崇高的地步,能夠達到嚴格的只有偉大的藝術能顯示的那種完滿的境界。」課堂上老師經常給我們講數學美,通過高等數學的學習,我漸漸地領略到數學美的真正含義,這種感覺是奇異的、微妙的,是可以神會而難以言傳的,數學,對我來說,是那樣的富有魅力……在生活中只要我們善於觀察,善於思考,將所學的知識與生活結合起來將會感到數學的樂趣。生活中處處都應用著數學的知識。

『陸』 誰幫我寫一篇關於黃金分割線的實際運用的論文

本學期我們學習了關於黃金分割的知識,我們深深地感到這黃金分割的美麗,也沉醉於其中.
關於黃金分割的起源大多認為來自畢達哥斯拉,據說在古希臘,有一天畢達哥斯拉走在街上,在經過鐵匠鋪前他聽到鐵匠打鐵的聲音非常好聽,於是駐足傾聽。他發現鐵匠打鐵節奏很有規律,這個聲音的比列被畢達哥斯拉用數理的方式表達出來。被應用在很多領域,後來很多人專門研究過,開普勒稱其為「神聖分割」也有人稱其為「金法「。在金字塔建成1000年後才出現畢達哥斯拉定律,可見這很早既存在。只是不知這個謎底。
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是5^/2-1/2或二分之根號五減一,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。黃金分割〔Golden Section〕是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。應用時一般取0.618 ,就像圓周率在應用時取3.14一樣。 黃金分割的無窮魅力再許多偉大的作品中都有體現.例如:,達·芬奇的《維特魯威人》符合黃金矩形。《蒙娜麗莎》的臉也符合黃金矩形,《最後的晚餐》同樣也應用了該比例布局。
黃金分割的應用十分廣泛,不僅僅體現在藝術中,還體現在古埃及的金字塔,還是巴黎的聖母院,或者是近世紀的法國埃菲爾鐵塔,黃金分割的近似值0.618在生活中可以說是無處不在.
在人體結構上,臍至腳底與頭頂至臍之比;軀干長度與臀寬之比;下肢長度與上肢長度之比,均近似於0.618。而且,越是接近於這個值,整個形體就越勻稱,越令人覺得完美。人在環境氣溫22℃-24℃下生活感到最適宜.因為人體的正常體溫是36℃-37℃,這個體溫與0.618的乘積恰好是22.4℃-22.8℃,而且在這一環境溫度中,人體的生理功能、生活節奏等新陳代謝水平均處於最佳狀態。再如,營養學中強調,一餐主食中要有六成粗糧和四成細糧的搭配進食,有益於腸胃的消化與吸收,避免腸胃病。這也可納入飲食的0.618規律之列。抗衰老有生理與心理抗衰之分,哪個為重?研究證明,生理上的抗衰為四,而心理上的抗衰為六,也符合黃金分割律。充分調動與合理協調心理和生理兩方面的力量來延緩衰老,可以達到最好的延年益壽的效果。一天合理的生活作息也符合0.618的分割,24小時中,2/3時間是工作與生活,1/3時間是休息與睡眠;在動與靜的關繫上,究竟是"生命在於運動",還是"生命在於靜養"?從辯證觀和大量的生活實踐證明,動與靜的關系同一天休息與工作的比例一樣,動四分,靜六分,才是最佳的保健之道. 動靜:從辯證觀點看,動和靜是一個0.618比例關系,大致四分動六分靜才是較佳養生之法。飲食:醫學專家分析後還發現,飯吃六七成飽的人幾乎不生胃病;攝入的飲食以六分粗糧、四分精食為適宜。從黃金分割律看,結婚的最佳季節是一年12個月的0.618處,約在7月底至8月底。醫學研究已表明,秋季是人的免疫力最佳的黃金季節。因為7月至8月時人體血液中淋巴細胞最多,能生成大量的抵抗各種微生物的淋巴因子,此時人的免疫力強.較少小戶型以其"低總價、低首付、低月供",把眾多剛剛踏入社會的年輕人吸引為有房一族。雖然市場上對小戶型的需求很熱烈,但也同樣具有投資風險。如何進行小戶型投資?市場時興一套有趣的"黃金分割論".時間分割因為工作時間與居家時間之比正好構成一個黃金分割,即0.618比0.382,所以專家認為,最有價值的地段可能是工作與社區之間的黃金分割點.尺度分割小戶型因其小,面積更要精打細算.在小戶型越來越熱的過程中,市場有一個趨勢,即戶型越小越好。但絕對的小既不符合居住者的正常生活需求,也絕對不會是潮流。新消費或投資趨勢表明,小戶型在面積大小上也存在黃金分割率.在30至80平方米之間,有一個黃金分割數,正好是50餘平方米。所以,市場上50餘平方米的小戶型熱賣度超過了其他規格.空間主要是卧室與起居,30平方米根本無法細分任何功能區,難以滿足高品質居家生活。而50多平方米是功能上黃金分割區的最小面積,即可分出30平方米的主體空間和20平方米的配套空間,解決獨立廚衛、陽台、儲藏等各個功能.因此,根據"黃金分割論"選擇的小戶型應該是既節省戶型面積,減少投資總額,同時又能滿足空間上的審美和功能需求,保證居住者的生活品質與居家情趣。

黃金分割比在未發現之前,在客觀世界中就存在的,只是當人們揭示了這一奧秘之後,才對它有了明確的認識。當人們根據這個法則再來觀察自然界時,就驚奇的發現原來在自然界的許多優美的事物中的能看到它,如植物的葉片、花朵,雪花,五角星……許多動物、昆蟲的身體結構中,特別是人體中更是有著豐富的黃金比的關系。當人們認識了這一自然法則之後,就被廣泛地應用於人類的生活之中。此後,在我們的生活環境中,就隨處可見了,如建處門窗、櫥櫃、書桌;我們常接觸的書本、報紙、雜志;現代的電影銀幕。電視屏幕,以及許多家用器物都是近似這個數比關系構成的。它特別表現藝術中,在美術史上曾經把它作為經典法則來應用。有許多美術家運用它創造了不少不朽的著名.黃金分割對攝影畫面構圖可以說有著自然聯系。例如照相機的片窗比例:135相機就是24X36即2:3的比例,這是很典型的。120相機4.5X6近似3:5,6X6雖然是方框,但在後期製作用,仍多數裁剪為長方形近似黃金分割的比例。只要我們翻開影集看一看,就會發現,大多數的畫幅形式,都是近似這個比例。這可能是受傳統的影響,也養成了人們的審美習慣。另外,也確實因為它具有悅目的性質,所以有時人們在時間中並非注意到這個比例,而特意去運用它,但往往就不自覺中,進入了這個法則之中。這也說明了,黃金分割的本身就存在有美的性質。在攝影實踐中,運用黃金分割法則,主要表象在黃金分割點、線、面的運用中。黃金分割點,在全景構圖中,多是主要表現對象,或是視覺中心所處的位置,在中、近景構圖中,多是景物主要部位所處的位。在人像構圖中常常是將人的眼睛處理在近於黃金分割點的位置。黃金分割線,多用作地平線、水平線、天際線所處的位置。就連主持人在舞台上的位置也符合黃金比.黃金分割在視覺上真是奇妙無窮.
黃金分割還被用於戰爭.傳奇人物拿破倫竟與黃金分割有不解之緣,這是怎麼一回是哪?原來1812年6月,正是莫斯科一年中氣候最為涼爽宜人的夏季,在未能消滅俄軍有生力量的博羅金諾戰役後,拿破崙於此時率領著他的大軍進入了莫斯科。這時的他可是躊躇滿志、不可一世。他並未意識到,天才和運氣此時也正從他身上一點點地消失,他一生事業的頂峰和轉折點正在同時到來。後來,法軍便在大雪紛揚、寒風呼嘯中灰溜溜地撤離了莫斯科。三個月的勝利進軍加上兩個月的盛極而衰,從時間軸上看,法蘭西皇帝透過熊熊烈焰俯瞰莫斯科城時,腳下正好就踩著黃金分割線。
1941年6月22日,納粹德國啟動了針對蘇聯的「巴巴羅薩」計劃,實行閃電戰,在極短的時間里,就迅速佔領了的蘇聯廣袤的領土,並繼續向該國的縱深推進。在長達兩年多的時間里,德軍一直保持著進攻的勢頭,直到1943年8月,「巴巴羅薩」行動結束,德軍從此轉入守勢,再也沒能力對蘇軍發起一次可以稱之為戰役行動的進攻。被所有戰爭史學家公認為蘇聯衛國戰爭轉折點的斯大林格勒戰役,就發生在戰爭爆發後的第17個月,正是德軍由盛而衰的26個月時間軸線的黃金分割點。
我們要首先感受並體會到數學學習中的美。數學美不同於其它的美,這種美是獨特的、內在的。這種美,正如英國著名哲學家、數理邏輯學家羅素所說:「數學,如果正確地看它,不但擁有真理,而且也具有至高無上的美,正象雕刻的美,是一種冷而嚴肅的美。這種美不是投合我們天性的微弱的方面,這種美沒有繪畫或音樂那樣華麗的服飾,它可以純凈到崇高的地步,能夠達到嚴格的只有偉大的藝術能顯示的那種完滿的境界。」課堂上老師經常給我們講數學美,通過高等數學的學習,我漸漸地領略到數學美的真正含義,這種感覺是奇異的、微妙的,是可以神會而難以言傳的,數學,對我來說,是那樣的富有魅力……在生活中只要我們善於觀察,善於思考,將所學的知識與生活結合起來將會感到數學的樂趣。生活中處處都應用著數學的知識

『柒』 求一篇有關黃金分割率的論文1000字左右

黃金分割
我們常常聽說有「黃金分割」這個詞,「黃金分割」當然不是指的怎樣分割黃金,這是一個比喻的說法,就是說分割的比例像黃金一樣珍貴。那麼這個比例是多少呢?是0.618。人們把這個比例的分割點,叫做黃金分割點,把0.618叫做黃金數。並且人們認為如果符合這一比例的話,就會顯得更美、更好看、更協調。在生活中,對「黃金分割」有著很多的應用。
黃金分割點在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。
建築師們對數學0.618…特別偏愛,無論是古埃及的金字塔,還是巴黎的聖母院,或者是近世紀的法國埃菲爾鐵塔,都有與0.618…有關的數據。人們還發現,一些名畫、雕塑、攝影作品的主題,大多在畫面的0.618…處。藝術家們認為弦樂器的琴馬放在琴弦的0.618…處,能使琴聲更加柔和甜美。
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。

『捌』 數學中的黃金分割——課題研究的論文

所謂「黃金分割法」最早是由古希臘畢達哥拉斯學派所發現,
其比值0.618即被稱為「黃金數」。有趣的是人們後來發現,0.
618竟是自然界生物(特別是人類)在億萬年進化中演繹出來的一
個「神數」,廣泛地適用於人類生活的許多領域 數值:
黃金分割奇妙之處,在於其比例與其倒數是一樣的。例如:1.618的倒數是0.618,而1.618:1與1:0.618是一樣的。
確切值為(√5-1)/2 ,即黃金分割數。
黃金分割數是無理數,前面的1024位為:
1.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922... 編輯本段|回到頂部發現歷史: 人們認為,黃金分割作圖與正五邊形、正十邊形和五角星形的作圖有關——特別是由五角星形作圖的需要引起的。 五角星形是一種很耐人尋味的圖案,世界許多國家國旗上的「星」都畫成五角形。現今有將近40個國家(如中國、美國、朝鮮、土耳其、古巴等等)的國旗上有五角星。為什麼是五角而不是其他數目的角?也許是古代留下來的習慣。
五角星形的起源甚早,現在發現最早的五角星形圖案是在幼發拉底河下游馬魯克地方(現屬伊拉克)發現的一塊公元前3200年左右製成的泥板上。
古希臘的畢達哥拉斯學派用五角星形作為他們的徽章或標志,稱之為「健康」。可以認為畢達哥拉斯已熟知五角星形的作法,由此可知他已掌握了黃金分割的方法。
現在人一般認為,黃金分割是由公元前6世紀的畢達哥拉斯發現的。 系統論述黃金分割的最早記載是歐幾里得的《幾何原本》,在該書第四卷中記述了用黃金分割作五邊形、十邊形的的問題,在第二卷第11節中詳細講了黃金分割的計算方法,其中寫道:「以點h按中末比截線段ab,使ab∶ah=ah∶hb」將這一式子計算一下:設 ab= 1, ah=x,則上面等式18,點h是ab的黃金分割點, 0.618叫做「黃金數」。 在《幾何原本》中把它稱為「中末比」。
直到文藝復興時期,人們重新發現了古希臘數學,並且發現這種比例廣泛存在於許多圖形的自然結構之中,因而高度推崇中末比的奇妙性質和用途。義大利數學家帕喬利稱中末比為「神聖比例」;德國天文學家開普勒稱中末比為「比例分割」,並認為勾股定理「好比黃金」,中末比「堪稱珠玉」。
最早在著作中使用「黃金分割」這一名稱的是德國數學家m·歐姆,他是發現電學的歐姆定律的g·s·歐姆的弟弟。他在自己的著作《純粹初等數學》(第二版,1835)中用了德文字:「der goldene schnitt(黃金分割)」來表述中末比,以後,這一稱呼才逐漸流行起來。 編輯本段|回到頂部黃金分割法的諸多應用: 在數學方面的應用:
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。
讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做"菲波那契數列",這些數被稱為"菲波那契數"。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。
菲波那契數列與黃金分割有什麼關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n-1)-→0.618…。由於菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我們的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什麼?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿後出現的所有三角形,都是黃金分割三角形。
由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。
黃金分割點約等於0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對於全部之比,等於另一部分對於該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...後二數之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黃金分割在文藝復興前後,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為"金法",17世紀歐洲的一位數學家,甚至稱它為"各種演算法中最可寶貴的演算法"。這種演算法在印度稱之為"三率法"或"三數法則",也就是我們現在常說的比例方法。
其實有關"黃金分割",我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,後來傳入了印度。經考證。歐洲的比例演算法是源於我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。
因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。
黃金分割〔Golden Section〕是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。應用時一般取1.618 ,就像圓周率在應用時取3.14一樣。
股票操盤方面的應用:
黃金分割法來源自黃金分割率,是計算強阻力位或強支撐位的一種方法,即人們認為指數或股價運動的阻力位或支撐位會與黃金分割率的一系列數字有關,可用這些數字來預判點位。
黃金分割的一般方法
黃金分割中最重要的數字是:
0.382 0.618
1.382 1.618 2
其具體應用是:
1.在上升行情掉頭向下時,可用近期上升行情的漲幅乘以以上第一行數字,再加上近期上升行情的起點,得到此次下跌的強支撐位。
如2007年10月17日以來的調整,可視為是對2005年6月6日以來的大牛市行情的調整,上證指數起點為2005年6月6日的998點,高點為2007年10月16日的6124點,則用黃金分割法得到:
(6124-998)×0.618+998=4166
(6124-998)×0.382+998=2956
則4166點和2956點附近可能成為本輪調整的強支撐位,這也正是某些機構報告中強調4200點附近會是本輪調整的第一道強支撐位的依據。
2.在下降行情掉頭向上時,可用近期下跌行情的低點乘以以上第二行數字,得到此次上漲的強阻力位。
如若預期上證指數2007年10月17日以來的調整的最低點為4200點,而調整到位後將演繹上升行情,則用黃金分割法得到:
4200×1.618=6796
4200×1.382=5804
則6796點和5804點附近可能成為上證指數本輪調整的強支撐位,這也正是某些機構報告中強調6800點附近會是本輪調整的強阻力位的依據。
黃金分割法只是提供了一些不容易被突破的阻力位或支撐位,投資者需要確認該阻力位或支撐位是否被突破後再做投資決策,而不是一到阻力位就賣出或一到支撐位就買進。黃金分割率所用於預測的周期越長,准確性往往越高。
初級帝納波利點位法
國際投資大師喬爾

『玖』 我要用PPT做一個關於<<黃金分割>>的研究性論文

黃金分割
目錄·介紹
·發現歷史
·生活應用
·0.618與戰爭
·證明方法
·線段的黃金分割(尺規作圖):
·黃金分割與人的關系

介紹
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是[5^(1/2)-1]/2,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。

讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做「菲波那契數列」,這些數被稱為「菲波那契數」。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。

菲波那契數列與黃金分割有什麼關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n-1)-→0.618…。由於菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。

不僅這個由1,1,2,3,5....開始的「菲波那契數」是這樣,隨便選兩個整數,然後按照菲波那契數的規律排下去,兩數間比也是會逐漸逼近黃金比的。

一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我國的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什麼?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿後出現的所有三角形,都是黃金分割三角形。

黃金分割三角形還有一個特殊性,所有的三角形都可以用四個與其本身全等的三角形來生成與其本身相似的三角形,但黃金分割三角形是唯一一種可以用5個而不是4個與其本身全等的三角形來生成與其本身相似的三角形的三角形。

由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。
黃金分割點約等於0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。

利用線段上的兩黃金分割點,可作出正五角星,正五邊形。

2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對於全部之比,等於另一部分對於該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...後二數之比2/3,3/5,5/8,8/13,13/21,...近似值的。
黃金分割在文藝復興前後,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為「金法」,17世紀歐洲的一位數學家,甚至稱它為「各種演算法中最可寶貴的演算法」。這種演算法在印度稱之為「三率法」或「三數法則」,也就是我們現在常說的比例方法。

其實有關「黃金分割」,我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,後來傳入了印度。經考證。歐洲的比例演算法是源於我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。

因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為「黃金分割」。

黃金分割〔Golden Section〕是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。應用時一般取0.618 ,就像圓周率在應用時取3.14一樣。

黃金矩形(Golden Rectangle)的長寬之比為黃金分割率,換言之,矩形的長邊為短邊 1.618倍。黃金分割率和黃金矩形能夠給畫面帶來美感,令人愉悅。在很多藝術品以及大自然中都能找到它。希臘雅典的帕撒神農廟就是一個很好的例子,達·芬奇的《維特魯威人》符合黃金矩形。《蒙娜麗莎》的臉也符合黃金矩形,《最後的晚餐》同樣也應用了該比例布局。

發現歷史

由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。

公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。

公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。

中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。

到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。

________________________
|
a b
a:b=(a+b):a
通常用希臘字母 表示這個值。

黃金分割奇妙之處,在於其比例與其倒數是一樣的。例如:1.618的倒數是0.618,而1.618:1與1:0.618是一樣的。
確切值為(√5-1)/2
黃金分割數是無理數,前面的1024位為:

0.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922...

生活應用

有趣的是,這個數字在自然界和人們生活中到處可見:人們的肚臍是人體總長的黃金分割點,人的膝蓋是肚臍到腳跟的黃金分割點。大多數門窗的寬長之比也是0.618…;有些植莖上,兩張相鄰葉柄的夾角是137度28',這恰好是把圓周分成1:0.618……的兩條半徑的夾角。據研究發現,這種角度對植物通風和採光效果最佳。

建築師們對數學0.618…特別偏愛,無論是古埃及的金字塔,還是巴黎的聖母院,或者是近世紀的法國埃菲爾鐵塔,都有與0.618…有關的數據。人們還發現,一些名畫、雕塑、攝影作品的主題,大多在畫面的0.618…處。藝術家們認為弦樂器的琴馬放在琴弦的0.618…處,能使琴聲更加柔和甜美。

數字0.618…更為數學家所關注,它的出現,不僅解決了許多數學難題(如:十等分、五等分圓周;求18度、36度角的正弦、餘弦值等),而且還使優選法成為可能。優選法是一種求最優化問題的方法。如在煉鋼時需要加入某種化學元素來增加鋼材的強度,假設已知在每噸鋼中需加某化學元素的量在1000—2000克之間,為了求得最恰當的加入量,需要在1000克與2000克這個區間中進行試驗。通常是取區間的中點(即1500克)作試驗。然後將試驗結果分別與1000克和2000克時的實驗結果作比較,從中選取強度較高的兩點作為新的區間,再取新區間的中點做試驗,再比較端點,依次下去,直到取得最理想的結果。這種實驗法稱為對分法。但這種方法並不是最快的實驗方法,如果將實驗點取在區間的0.618處,那麼實驗的次數將大大減少。這種取區間的0.618處作為試驗點的方法就是一維的優選法,也稱0.618法。實踐證明,對於一個因素的問題,用「0.618法」做16次試驗就可以完成「對分法」做2500次試驗所達到的效果。因此大畫家達·芬奇把0.618…稱為黃金數。

0.618與戰爭
0.618與戰略戰役

0.618,一個極為迷人而神秘的數字,而且它還有著一個很動聽的名字——黃金分割律,它是古希臘著名哲學家、數學家畢達哥拉斯於2500多年前發現的。古往今來,這個數字一直被後人奉為科學和美學的金科玉律。在藝術史上,幾乎所有的傑出作品都不謀而合地驗證了這一著名的黃金分割律,無論是古希臘帕特農神廟,還是中國古代的兵馬俑,它們的垂直線與水平線之間竟然完全符合1比0.618的比例。

也許,0.618在科學藝術上的表現我們已了解了很多,但是,你有沒有聽說過,0.618還與炮火連天、硝煙彌漫、血肉橫飛的慘烈、殘酷的戰場也有著不解之緣,在軍事上也顯示出它巨大而神秘的力量?

0.618與武器裝備

在冷兵器時代,雖然人們還根本不知道黃金分割率這個概念,但人們在製造寶劍、大刀、長矛等武器時,黃金分割率的法則也早已處處體現了出來,因為按這樣的比例製造出來的兵器,用起來會更加得心應手。

當發射子彈的步槍剛剛製造出來的時候,它的槍把和槍身的長度比例很不科學合理,很不方便於抓握和瞄準。到了1918年,一個名叫阿爾文·約克的美遠征軍下士,對這種步槍進行了改造,改進後的槍型槍身和槍把的比例恰恰符合0.618的比例。

實際上,從鋒利的馬刀刃口的弧度,到子彈、炮彈、彈道導彈沿彈道飛行的頂點;從飛機進入俯沖轟炸狀態的最佳投彈高度和角度,到坦克外殼設計時的最佳避彈坡度,我們也都能很容易地發現黃金分割率無處不在。

在大炮射擊中,如果某種間瞄火炮的最大射程為12公里,最小射程為4公里,則其最佳射擊距離在9公里左右,為最大射程的2/3,與0.618十分接近。在進行戰斗部署時,如果是進攻戰斗,大炮陣地的配置位置一般距離己方前沿為1/3倍最大射程處,如果是防禦戰斗,則大炮陣地應配置距己方前沿2/3倍最大射程處。

0.618與戰術布陣

在我國歷史上很早發生的一些戰爭中,就無不遵循著0.618的規律。春秋戰國時期,晉厲公率軍伐鄭,與援鄭之楚軍決戰於鄢陵。厲公聽從楚叛臣苗賁皇的建議,把楚之右軍作為主攻點,因此以中軍之一部進攻楚軍之左軍;以另一部進攻楚軍之中軍,集上軍、下軍、新軍及公族之卒,攻擊楚之右軍。其主要攻擊點的選擇,恰在黃金分割點上。

把黃金分割律在戰爭中體現得最為出色的軍事行動,還應首推成吉思汗所指揮的一系列戰事。數百年來,人們對成吉思汗的蒙古騎兵,為什麼能像颶風掃落葉般地席捲歐亞大陸頗感費解,因為僅用游牧民族的彪悍勇猛、殘忍詭譎、善於騎射以及騎兵的機動性這些理由,都還不足以對此做出令人完全信服的解釋。或許還有別的更為重要的原因?仔細研究之下,果然又從中發現了黃金分割律的偉大作用。蒙古騎兵的戰斗隊形與西方傳統的方陣大不相同,在它的5排制陣形中,人盔馬甲的重騎兵和快捷靈動輕騎兵的比例為2:3,這又是一個黃金分割!你不能不佩服那位馬背軍事家的天才妙悟,被這樣的天才統帥統領的大軍,不縱橫四海、所向披靡,那才怪呢。

馬其頓與波斯的阿貝拉之戰,是歐洲人將0.618用於戰爭中的一個比較成功的範例。在這次戰役中,馬其頓的亞歷山大大帝把他的軍隊的攻擊點,選在了波斯大流士國王的軍隊的左翼和中央結合部。巧的是,這個部位正好也是整個戰線的「黃金點」,所以盡管波斯大軍多於亞歷山大的兵馬數十倍,但憑借自己的戰略智慧,亞歷山大把波斯大軍打得潰不成軍。這一戰爭的深刻影響直到今天仍清晰可見, 在海灣戰爭中,多國部隊就是採用了類似的布陣法打敗了伊拉克軍隊。

兩支部隊交戰,如果其中之一的兵力、兵器損失了1/3以上,就難以再同對方交戰下去。正因為如此,在現代高技術戰爭中,有高技術武器裝備的軍事大國都採取長時間空中打擊的辦法,先徹底摧毀對方1/3以上的兵力、武器,爾後再展開地面進攻。讓我們以海灣戰爭為例。戰前,據軍事專家估計,如果共和國衛隊的裝備和人員,經空中轟炸損失達到或超過30%,就將基本喪失戰鬥力。為了使伊軍的損耗達到這個臨界點,美英聯軍一再延長轟炸時間,持續38天,直到摧毀了伊拉克在戰區內428輛坦克中的38%、2280輛裝甲車中的32%、3100門火炮中的47%,這時伊軍實力下降至60%左右,這正是軍隊喪失戰鬥力的臨界點。也就是將伊拉克軍事力量削弱到黃金分割點上後,美英聯軍才抽出「沙漠軍刀」砍向薩達姆,在地面作戰只用了100個小時就達到了戰爭目的。在這場被譽為「沙漠風暴」的戰爭中,創造了一場大戰僅陣亡百餘人奇跡的施瓦茨科普夫將軍,算不上是大師級人物,但他的運氣卻幾乎和所有的軍事藝術大師一樣好。其實真正重要的並不是運氣,而是這位率領一支現代大軍的統帥,在進行戰爭的運籌帷幄中,有意無意地涉及了0.618,也就是說,他多多少少託了黃金分割律的福。

此外,在現代戰爭中,許多國家的軍隊在實施具體的進攻任務時,往往是分梯隊進行的,第一梯隊的兵力約占總兵力的2/3,第二梯隊約佔1/3。在第一梯隊中,主攻方向所投入的兵力通常為第一梯隊總兵力的2/3,助攻方向則為1/3。防禦戰斗中,第一道防線的兵力通常為總數的2/3,第二道防線的兵力兵器通常為總數的1/3。

拿破崙大帝敗於黃金分割線?

0.618不僅在武器和一時一地的戰場布陣上體現出來,而且在區域廣闊、時間跨度長的宏觀的戰爭中,也無不得到充分地展現。

一代梟雄的的拿破崙大帝可能怎麼也不會想到,他的命運會與0.618緊緊地聯系在一起。1812年6月,正是莫斯科一年中氣候最為涼爽宜人的夏季,在未能消滅俄軍有生力量的博羅金諾戰役後,拿破崙於此時率領著他的大軍進入了莫斯科。這時的他可是躊躇滿志、不可一世。他並未意識到,天才和運氣此時也正從他身上一點點地消失,他一生事業的頂峰和轉折點正在同時到來。後來,法軍便在大雪紛揚、寒風呼嘯中灰溜溜地撤離了莫斯科。三個月的勝利進軍加上兩個月的盛極而衰,從時間軸上看,法蘭西皇帝透過熊熊烈焰俯瞰莫斯科城時,腳下正好就踩著黃金分割線。

1941年6月22日,納粹德國啟動了針對蘇聯的「巴巴羅薩」計劃,實行閃電戰,在極短的時間里,就迅速佔領了的蘇聯廣袤的領土,並繼續向該國的縱深推進。在長達兩年多的時間里,德軍一直保持著進攻的勢頭,直到1943年8月,「巴巴羅薩」行動結束,德軍從此轉入守勢,再也沒能力對蘇軍發起一次可以稱之為戰役行動的進攻。被所有戰爭史學家公認為蘇聯衛國戰爭轉折點的斯大林格勒戰役,就發生在戰爭爆發後的第17個月,正是德軍由盛而衰的26個月時間軸線的黃金分割點。

我們常常聽說有「黃金分割」這個詞,「黃金分割」當然不是指的怎樣分割黃金,這是一個比喻的說法,就是說分割的比例像黃金一樣珍貴。那麼這個比例是多少呢?是0.618。人們把這個比例的分割點,叫做黃金分割點,把0.618叫做黃金數。並且人們認為如果符合這一比例的話,就會顯得更美、更好看、更協調。在生活中,對「黃金分割」有著很多的應用。

最完美的人體:肚臍到腳底的距離/頭頂到腳底的距離=0.618

最漂亮的臉龐:眉毛到脖子的距離/頭頂到脖子的距離=0.618

證明方法

設一條線段AB的長度為a,C點在靠近B點的黃金分割點上且AC為b
AC/AB=BC/AC
b^2=a*(a-b)
b^2=a^2-ab
a^-ab+(1/4)b^2=(5/4)*b^2
(a-b/2)^2=(5/4)b^2
a-b/2=(√5/2)*b
a-b/2=(√5)b/2
a=b/2+(√5)b/2
a=b(√5+1)/2
a/b=(√5+1)/2

線段的黃金分割(尺規作圖):

1.設已知線段為AB,過點B作BC⊥AB,且BC=AB/2;
2.連結AC;
3.以C為圓心,CB為半徑作弧,交AC於D;
4.以A為圓心,AD為半徑作弧,交AB於P,則點P就是AB的黃金分割點。
古希臘帕提儂神廟是舉世聞名的完美建築,它的高和寬的比是0.618。建築師們發現,按這樣的比例來設計殿堂,殿堂更加雄偉、美麗;去設計別墅,別墅將更加舒適、漂亮.連一扇門窗若設計為黃金矩形都會顯得更加協調和令人賞心悅目.

事實上,在一個黃金矩形中,以一個頂點為圓心,矩形的較短邊為半徑作一個四分之一圓,交較長邊與一點,過這個點,作一條直線垂直於較長邊,這時,生成的新矩形(不是那個正方形)仍然是一個黃金矩形,這個操作可以無限重復,產生無數個黃金矩形。

令人驚訝的是,人體自身也和0.618密切相關,對人體解剖很有研究的義大利畫家達·芬奇發現,人的肚臍位於身長的0.618處;咽喉位於肚臍與頭頂長度的0.618處;肘關節位於肩關節與指頭長度的0.618處,人體存在著肚臍、咽喉、膝蓋、肘關節四個黃金分割點,它們也是人賴以生存的四處要害。

黃金分割與人的關系
黃金分割與人的關系相當密切。地球表面的緯度范圍是0——90°,對其進行黃金分割,則34.38°——55.62°正是地球的黃金地帶。無論從平均氣溫、年日照時數、年降水量、相對濕度等方面都是具備適於人類生活的最佳地區。說來也巧,這一地區幾乎囊括了世界上所有的發達國家。
醫學與0.618有著千絲萬縷的聯系,它可解釋人為什麼在環境22至24攝攝氏度時感覺最舒適。因為人的體溫為37°C與0.618的乘積為22.8°C,而且這一溫度中肌體的新陳代謝、生理節奏和生理功能均處於最佳狀態。科學家們還發現,當外界環境溫度為人體溫度的0.618倍時,人會感到最舒服.現代醫學研究還表明,0.618與養生之道息息相關,動與靜是一個0.618的比例關系,大致四分動六分靜,才是最佳的養生之道。醫學分析還發現,飯吃六七成飽的幾乎不生胃病。
高雅的藝術殿堂里,自然也留下了黃金數的足跡。畫家們發現,按0.618:1來設計腿長與身高的比例,畫出的人體身材最優美,而現今的女性,腰身以下的長度平均只佔身高的0.58,因此古希臘維納斯女神塑像及太陽神阿波羅的形象都通過故意延長雙腿,使之與身高的比值為0.618,從而創造藝術美。難怪許多姑娘都願意穿上高跟鞋,而芭蕾舞演員則在翩翩起舞時,不時地踮起腳尖。音樂家發現,二胡演奏中,「千金」分弦的比符合0.618∶1時,奏出來的音調最和諧、最悅耳。
植物葉子,千姿百態,生機盎然,給大自然帶來了美麗的綠色世界。盡管葉子形態隨種而異,但它在莖上的排列順序(稱為葉序),卻是極有規律的。有些植物的花瓣及主幹上枝條的生長,也是符合這個規律的。你從植物莖的頂端向下看,經細心觀察,發現上下層中相鄰的兩片葉子之間約成137.5°角。如果每層葉子只畫一片來代表,第一層和第二層的相鄰兩葉之間的角度差約是137.5°,以後二到三層,三到四層,四到五層……兩葉之間都成這個角度。植物學家經過計算表明:這個角度對葉子的採光、通風都是最佳的。葉子的排布,多麼精巧!葉子間的137.5°角中,藏有什麼「密碼」呢?我們知道,一周是360°,360°-137.5°=222.5°,而137.5°∶222.5°≈0.618。 瞧,這就是「密碼」!葉子的精巧而神奇的排布中,竟然隱藏著0.618。

『拾』 急求一篇有關黃金分割的論文2000字左右

黃金分割的美感
[摘要]
中世紀德國的數學家、天文學家開普勒曾經指出:「在幾何學中有兩件瑰寶:一是畢達哥拉斯定理,另一個是黃金分割率。」
黃金分割這個名詞現在已經被越來越多的人所知。黃金分割這個數學中的名詞已經不在神秘。它被運用在各種各樣的方面。大到建築、美術、攝影,到處都有它的身影。現在我就對黃金分割美感展開具體的分析與研究。什麼是黃金分割、黃金分割的發現歷史、黃金分割的美感與應用,在本文中會一一提到。
一、什麼是黃金分割
什麼是黃金分割?或許大多數人只知道0.618這個數字。但是,難道黃金分割就只有這些嗎?黃金分割﹝Golden Section﹞是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。
把一條線段分成兩段,使其中較大的一段是原線段與較小一段的比例中項,叫做把這條線段黃金分割.
如圖:AC/BC=AB/AC,則圖中C點就為黃金分割點。取AB=L,AC=x,因為AC2=AB×BC,所以x2=(L-x)×L,即x2+xL-L2=0,解得x=

在黃金分割線段的基礎上,還有一種矩形叫做黃金矩形。上圖中,以AC為長,BC為寬,作出的長方形既黃金矩形。
凡是符合這種比例分割的任何物體和對象,都具有很好的使用價值和美學特徵。畢達哥拉斯曾把「0.618」這個數譽為人間最精巧的比例,哪裡有0.618,那裡就閃爍著美。

二、黃金分割的發現
黃金分割是古希臘哲學家畢達哥拉斯發現。一天,畢達哥拉斯從一家鐵匠鋪路過,被鋪子中那有節奏的叮叮當當的打鐵聲所吸引,便站在那裡仔細聆聽,似乎這聲音中隱匿著什麼秘密。他走進作坊,拿出一把尺量了一下鐵錘和鐵砧的尺寸,發現它們之間存在著一種十分和諧的關系。回到家裡,畢達哥拉斯拿出一根線,想將它分為兩段。怎樣分才最好呢?經過反復比較,他最後確定1:0.618的比例截斷最優美。後來,德國的美學家澤辛把這一比例稱為黃金分割律。這個規律的意思是,較大部分與整體這個比等於較小部分與較大部分之比。無論什麼物體、圖形,只要它各部分的關系都與這種分割法相符,這類物體、圖形就能給人最悅目、最美的印象。

三、黃金分割的美感與應用:
黃金分割律的美感探究首先,表現在它的形式美感上。19世紀後期,德國的心理學家古斯塔夫•費希納(Gustav fechner)做了一個實驗,其實驗測量各種矩形人造物,其結果,他發現大部分人更喜愛邊長比例接近於黃金分割律的矩形,這從一個側面說明了黃金比例圖形具有一符合人體標準的視覺愉悅性。其次,不乏生理與心理原因。1、生理原因科學研究表明,人的雙眼視域是兩個不同心的圓所圍成的總區域,如若以一眼的正視時的中心作為一分割點去分割整個雙眼視域的長,得出的正是一黃金分割的比例。所以,這個視域正是視覺感覺舒適的區域,這也可能正是黃金分割律美感的生理緣由。深層去追溯,可以用哲學家榮格所說的集體無意識的概念去解釋和溯源:因為黃金分割律可能暗合人類的一種先天視覺識別能力的積淀。就是說,在大自然長期發展過程中,由於人類周圍的環境,各種各樣的動物和植物的形式和式樣,他們都蘊含了這一形式比例的生物規律,這一規律長期作用著人類的視覺系統,因而大自然在潛移默化中業已決定了人類的這種「黃金」視覺愉悅性(例如,花和葉的器官是由於其螺旋上升式生長,從而保證了葉與葉之間不會重合,下面的葉片正好在從上面葉片間漏下陽光的空隙地方,這是採光面積最大的排列方式。也因而,沿對數螺旋按圓的黃金分割盤旋而生,是葉片排列的最優良選擇。輻射對稱的花及螺旋排列的果,它們在數學上也符合黃金分割的規律。這應該是一種進化論的「自然選擇」吧。)。其實,人類其本身的大部分形體比例也是符合黃金分割律的比例分割的。古希臘哲學家普羅泰格拉曾說「人是萬物的尺度」就隱含了人是自然界這種規律的造物。2、黃金比例美感的心理原因眾所周知,平衡是大自然的一種規律和狀態。在物理學中,據熱力學推導出的一定律是:世間一切物理運動都可以被看作是趨向平衡的活動。同時,在心理學領域,格式塔心理學家們也得出:每一個心理活動領域都趨向於一種最簡單、最平衡和最規則的組織形態。所以,阿恩海姆推導弗洛伊德的觀點,得出一結論:平衡是任何自我實現者所要達到的最終目標,也是他所要完成一切任務、解決一切問題的最終歸宿。而黃金分割這一比例恰恰是達到人類視覺平衡和心理平衡的一最佳比例。這可能就是其能獲美感的深層心理原因。黃金分割律與設計在設計中,無論是古埃及的金字塔、古希臘的帕特農神殿、印度泰姬陵、法國巴黎聖母院還是中國故宮,中國的秦磚、漢瓦當都暗合黃金分割律。其實,現今我們周圍的世界,小到火柴盒、信封、郵票,大到一些工業產品、建築房屋,都有黃金分割在其中的應用和體現。在而今的視覺傳達設計中,已有很多設計門類巧妙的應用了黃金分割,取得了很好的效果。從視覺的舒適程度,黃金分割是其最佳位置。在海報設計中,有揚•奇科爾德的《構成主義》、《職業攝影》海報和馬克思•比爾的《形式藝術》海報。這兩人都是平面設計的傑出作者,他們在海報作品中巧妙的運用黃金分割律,創造出了不同凡響的藝術風格。綜上所述,正是由於黃金分割律有著深厚的哲理及生理、心理蘊意,且符合一種似乎天生的自然法則,所以得到了很多領域的應用。我們除挖掘出它意義的理論內涵外,更要不斷開拓其應用領域。用它來指導設計,使其在視覺傳達領域得到更為廣闊的運用。當然,如若要確實的用好它,還要考慮到中國傳統文化中"月滿則虧,水滿自溢"的道理,從而靈活、巧妙地應用它。以便使我們的設計在符合人的視覺審美心理的同時,更好地發揮黃金分割律在視覺傳達設計中的作用。

閱讀全文

與黃金分割及其應用論文相關的資料

熱點內容
恆冒財富理財 瀏覽:721
銀行跨境理財 瀏覽:352
股票一次最多買多少股 瀏覽:666
辦房貸要買貴金屬 瀏覽:702
80年代理財 瀏覽:903
中翌理財虧掉怎麼報警 瀏覽:295
人民幣增值利好哪些股 瀏覽:532
招財貓理財投資 瀏覽:577
徵信可以辦助學貸款嗎 瀏覽:259
東方財富期貨怎麼關注好友組合 瀏覽:263
紅棗期貨10000元 瀏覽:494
51vv股票是什麼意思 瀏覽:641
信託與pe 瀏覽:64
新聞聯播人民幣 瀏覽:529
股份融資 瀏覽:55
翹然天津資本投資咨詢有限公司 瀏覽:456
融資融券寶典 瀏覽:29
定期理財規劃 瀏覽:599
恆大集團股票行情 瀏覽:6
信託信披 瀏覽:944