导航:首页 > 基金投资 > 浙江大学量化投资

浙江大学量化投资

发布时间:2021-02-06 14:52:01

1. 量化投资什么意思

量化投资是指通过数量化方式及计算机程序化发出买卖指令,以数学模型替代人为的主观判断,利用计算机技术、大数据等手段作出投资决策的投资方法。

2. 想走量化投资方向,大概需要什么学历

硕士学历足够,需要具备金融学、心理学、经济学、统计学、会计学等,总结数据统计能力、计算机技能以及心理素质。
量化投资可以肯定说目前还是一年蓝海,稀缺人才很少,如果有志往这方面发展是不错的选择。

3. 量化投资好做吗,这份工作有多难

比较专业,还需专业人士来做。

4. 量化投资要学那个语言好

Matlab 和 C++,一个建模一抄个执行,足够了。实在不爱用Matlab的话,R和Python也行。多看书多学习,英语也是很重要的。可以找视频和书籍学习。

个人推荐《量化投资:以python为工具》主要讲解量化投资的思想和策略,并借助Python 语言进行实战。《量化投资:以Python为工具》一共分为5 部分,第1 部分是Python 入门,第2 部分是统计学基础,第3 部分是金融理论、投资组合与量化选股,第4 部分是时间序列简介与配对交易,第5 部分是技术指标与量化投资。《量化投资:以Python为工具》首先对Python 编程语言进行介绍,通过学习,读者可以迅速掌握用Python 语言处理数据的方法,并灵活运用Python 解决实际金融问题;其次,向读者介绍量化投资的理论知识,主要讲解量化投资所需的数量基础和类型等方面;最后讲述如何在Python 语言中构建量化投资策略。

5. 浙江大学的统计学专业是不是冷门专业

不是冷门专业,热门与冷门在四年后是会变化的。还有些热门是虚热,比如电子商专务。

毕业生属应获得以下几方面的知识和能力:

1、具有扎实的数学基础,受到比较严格的科学思维训练;

2、掌握统计学的基本理论、基本知识、基本方法和计算机操作技能;具有采集数据、设计调查问卷和处理调查数据的基本能力;

3、了解与社会经济统计、医药卫生统计、生物统计或工业统计等有关的自然科学、社会科学、工程技术的基本知识,具有应用统计学理论分析、解决该领域实际问题的初步能力;

4、了解统计学理论与方法的发展动态及其应用前景;

5、对于理学学士,应能熟练使用各种统计软件包,有较强的统计计算能力;对于经济学学士,应具有扎实的经济学基础,具有利用信息资料进行综合分析和管理的能力

6. 目前对量化投资非常感兴趣 所以想请教下各位大神

模型仅仅是方来法论,不是说模型本自身能解决投资问题.
模型能否有效,主要还是看你的模型背后的逻辑思路是否有效.
你去看看:经济学(曼昆)金融学(博迪);金融工程(约翰希尔);在学学量子力学、计算机编程+你的本行(实变函数、复变函数、测度论、鞅、随机过程等等)。
你的数学基础会派上用途的,前途路漫漫,加油吧!

7. 量化投资的主要方法和前沿进展

量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。

8. 什么是量化投资

你好,量化投资,简单地说就是利用数学、统计学、信息技术的量化投资方法来管理投资组合。

9. 量化投资、量化交易、量化金融,这三者有什么区别吗

其二,行为金融学认为,投资者是不理性的。任何一个投资个体的判断与决策过程都会不同程度地受到认知、情绪、意志等各种心理因素的影响。基金经理和投资研究员在一段时间跟踪某只股票之后,由于时刻关心股价的表现和基本面的变动,可能出现不同程度的情感依赖,“和股票谈起恋爱”。即使出现了下跌趋势,也可能因为过度自信、抵制心理等不理性的分析出发点而导致投资、荐股时的行为偏差。而量化投资依靠计算机配置投资组合,克服了人性弱点,使投资决策更科学、更理性。

10. 量化投资的优势是什么,金昉毅老师怎么看待

嗯量化投资的优势是什么金以防老师怎么看的而这个我觉得吧量化投资就是说他专注于某一个方面

阅读全文

与浙江大学量化投资相关的资料

热点内容
中国电影投资 浏览:926
2078等于多少人民币 浏览:951
科创板基金申购比例 浏览:82
反弹基金 浏览:802
适合40岁怎么理财 浏览:147
开户香港期货所 浏览:960
合营企业投资 浏览:891
青海省年丰投资有限公司 浏览:614
08245股票 浏览:573
华民慈善基金会登陆 浏览:838
8200美金等于多少人民币 浏览:126
stp外汇平台 浏览:457
资金用途有哪些 浏览:711
格莱美股票 浏览:688
沪深300指数基金管理费最低 浏览:62
大学生创业无息贷款政策 浏览:957
京保贝目标群体资金来源 浏览:409
广西白砂糖今日价格 浏览:657
为什么资金净流入是负数 浏览:949
股票型基金重仓股是什么 浏览:651