导航:首页 > 基金投资 > 期货市场偏度

期货市场偏度

发布时间:2021-07-26 11:05:24

Ⅰ 怎样理解统计学中“偏度”或“偏态系数”这一指标

偏度这一指标,又称偏斜系数、偏态系数,是用来帮助判断数据序列的分布规律性的指标。 在数据序列呈对称分布(正态分布)的状态下,其均值、中位数和众数重合。且在这三个数的两侧,其它所有的数据完全以对称的方式左右分布。 如果数据序列的分布不对称,则均值、中位数和众数必定分处不同的位置。这时,若以均值为参照点,则要么位于均值左侧的数据较多,称之为右偏;要么位于均值右侧的数据较多,称之为左偏;除此无它。 考虑到所有数据与均值之间的离差之和应为零这一约束,则当均值左侧数据较多的时候,均值的右侧必定存在数值较大的“离群”数据;同理,当均值右侧数据较多的时候,均值的左侧必定存在数值较小的“离群”数据。 一般将偏度定义为三阶中心矩与标准差的三次幂之比。 在上述定义下,偏度系数的取值无非三种情景: 1.当数据序列呈正态分布的时候,由于均值两侧的数据完全对称分布,其三阶中心矩必定为零,于是满足正态分布的数据序列的偏度系数必定等于零。 2.当数据序列非对称分布的时候,如果均值的左侧数据较多,则其右侧的“离群”数据对三阶中心矩的计算结果影响至巨,乃至于三阶中心矩取正值。因此,当数据的分布呈右偏的时候,其偏度系数将大于零。 3.当数据序列非对称分布的时候,如果均值的右侧数据较多,则其左侧的“离群”数据对三阶中心矩的计算结果影响至巨,乃至于三阶中心矩取负值。因此,当数据的分布呈左偏的时候,偏度系数将小于零。 在右偏的分布中,由于大部分数据都在均值的左侧,且均值的右侧存在“离群”数据,这就使得分布曲线的右侧出现一个长长的拖尾;而在左偏的分布中,由于大部分数据都在均值的右侧,且均值的左侧存在“离群”数据,从而造成分布曲线的左侧出现一个长长的拖尾。 可见,在偏度系数的绝对值较大的时候,最有可能的含义是“离群”数据离群的程度很高(很大或很小),亦即分布曲线某侧的拖尾很长。 但“拖尾很长”与“分布曲线很偏斜”不完全等价。例如,也不能排除在数据较少的那一侧,只是多数数据的离差相对于另一侧较大,但不存在明显“离群”数据的情景。所以,为准确判断分布函数的偏斜程度,最好的办法是直接观察分布曲线的几何图形。

Ⅱ 什么是峰度和偏度

表征概率密度分布曲线在平均值处峰值高低的特征数。峰度反映了峰部的尖度。样本的峰度是和正态分布相比较而言统计量,如果峰度大于三,峰的形状比较尖,比正态分布峰要陡峭,反之亦然。

在统计学中,峰度(Kurtosis)衡量实数随机变量概率分布的峰态。峰度高就意味着方差增大是由低频度的大于或小于平均值的极端差值引起的。

偏度是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。

公式中,Sₖ——偏度;μ₃——3阶中心矩;σ——标准差。

在实际应用中,通常将峰度值做减3处理,使得正态分布的峰度0。因此,在使用统计软件进行计算时,应注意该软件默认的峰度值计算公式。如Eviews默认的正态分布峰度为3。

Ⅲ 偏度的介绍

偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。

Ⅳ 偏度的简介

表征概率分布密度曲线相对于平均值不对称程度的特征数。直观看来就是密度函数曲线尾部的相对长度。
定义上偏度是样本的三阶标准化矩,定义式如下 ,其中 分别表示二阶和三阶中心距:

正态分布的偏度为0,两侧尾部长度对称。若以bs表示偏度。bs<0称分布具有负偏离,也称左偏态,此时数据位于均值左边的比位于右边的少,直观表现为左边的尾部相对于与右边的尾部要长,因为有少数变量值很小,使曲线左侧尾部拖得很长;bs>0称分布具有正偏离,也称右偏态,此时数据位于均值右边的比位于左边的少,直观表现为右边的尾部相对于与左边的尾部要长,因为有少数变量值很大,使曲线右侧尾部拖得很长;而bs接近0则可认为分布是对称的。若知道分布有可能在偏度上偏离正态分布时,可用偏离来检验分布的正态性。右偏时一般算术平均数>中位数>众数,左偏时相反,即众数>中位数>平均数。正态分布三者相等。

Ⅳ 偏度系数为什么介于

-0.114说明你的数据呈负偏态咯,但是这个系数没有显著性检验,你不知道到底偏度达到显著了没有,一般检验偏度是为了考察数据是否正态分布。
偏度系数在spss里面一般可以通过下面两种操作得到:
1、你在spss菜单中选择分析——描述统计——探索,将需要检验的变量放入因变量里面,选择“绘制——带检验的正态图,不仅可以得到偏度系数,还可以了解数据是否正态,看一下tests of normality就可以,如果成正态,sig不会小于临界值。
2、选择分析——描述统计——频率——统计量,在分布那一行下面勾选偏度,然后点击OK,就可以得到偏度系数

Ⅵ 金融数据的尖峰厚尾特征是什么意思

金融数据的尖峰厚尾特征是相比较标准正态分布来说的,标准正态分布的偏度为0,峰度为3,通常做实证分析时,会假设金融数据为正态分布,这样方便建模分析。

但是实证表明,很多数据并不符合正态分布,而更像尖峰厚尾,就是峰度比3大,两边的尾巴比正态分布厚,没有下降得这么快。

厚尾分布主要是出现在金融数据中,例如证券的收益率。 从图形上说,较正态分布图的尾部要厚,峰处要尖。

直观些说,就是这些数据出现极端值的概率要比正态分布数据出现极端值的概率大。因此,不能简单的用正态分布去拟合这些数据的分布,从而做一些统计推断。一般来说,通过实证分析发现,自由度为5或6的t分布拟合的较好。

(6)期货市场偏度扩展阅读:

基金收益率不服从正态分布,存在显著的尖峰厚尾特性,我国基金市场还不是有效市场。人民币汇率收益率波动有集群性效应,不符合正态分布,有尖峰厚尾的特点。结果表明稳定分布能更好的拟和中国股票收益率的实际分布,稳定分布较好的处理中国股票市场中的“尖峰尾”现象。

但很多资本市场上的现象无法用EMH解释,如证券收益的尖峰厚尾,证券市场的突然崩溃,股价序列的长期记忆性等。对期货价格数据进行统计分析,发现期货价格具有“尖峰厚尾”特性。实证结果表明:我国股价波动具有尖峰厚尾特征、异方差性特征和波动的持续性和非对称特征。

而股票市场的收益率从分布的角度看,并不服从标准的正态分布,而是呈现出一种“尖峰、厚尾”的特征。

Ⅶ 怎样理解统计学中“偏度”或“偏态系数”这一指标

偏度这一指标,又称偏斜系数、偏态系数,是用来帮助判断数据序列的分布规律性的指标.\x0d在数据序列呈对称分布(正态分布)的状态下,其均值、中位数和众数重合.且在这三个数的两侧,其它所有的数据完全以对称的方式左右分布.\x0d如果数据序列的分布不对称,则均值、中位数和众数必定分处不同的位置.这时,若以均值为参照点,则要么位于均值左侧的数据较多,称之为右偏;要么位于均值右侧的数据较多,称之为左偏;除此无它.\x0d考虑到所有数据与均值之间的离差之和应为零这一约束,则当均值左侧数据较多的时候,均值的右侧必定存在数值较大的“离群”数据;同理,当均值右侧数据较多的时候,均值的左侧必定存在数值较小的“离群”数据.\x0d一般将偏度定义为三阶中心矩与标准差的三次幂之比.\x0d在上述定义下,偏度系数的取值无非三种情景:\x0d1.当数据序列呈正态分布的时候,由于均值两侧的数据完全对称分布,其三阶中心矩必定为零,于是满足正态分布的数据序列的偏度系数必定等于零.\x0d2.当数据序列非对称分布的时候,如果均值的左侧数据较多,则其右侧的“离群”数据对三阶中心矩的计算结果影响至巨,乃至于三阶中心矩取正值.因此,当数据的分布呈右偏的时候,其偏度系数将大于零.\x0d3.当数据序列非对称分布的时候,如果均值的右侧数据较多,则其左侧的“离群”数据对三阶中心矩的计算结果影响至巨,乃至于三阶中心矩取负值.因此,当数据的分布呈左偏的时候,偏度系数将小于零.\x0d在右偏的分布中,由于大部分数据都在均值的左侧,且均值的右侧存在“离群”数据,这就使得分布曲线的右侧出现一个长长的拖尾;而在左偏的分布中,由于大部分数据都在均值的右侧,且均值的左侧存在“离群”数据,从而造成分布曲线的左侧出现一个长长的拖尾.\x0d可见,在偏度系数的绝对值较大的时候,最有可能的含义是“离群”数据离群的程度很高(很大或很小),亦即分布曲线某侧的拖尾很长.\x0d但“拖尾很长”与“分布曲线很偏斜”不完全等价.例如,也不能排除在数据较少的那一侧,只是多数数据的离差相对于另一侧较大,但不存在明显“离群”数据的情景.所以,为准确判断分布函数的偏斜程度,最好的办法是直接观察分布曲线的几何图形.

Ⅷ 正态分布,泊松分布,伽玛分布,对数正态分布偏度由高到低分别是

依照偏度由高到低分别是对数正态分布、伽玛分布、泊松分布、正态分布。

偏度是利用3阶矩定义的,偏度的计算公式为:



其中,Sk为偏度;μ3为3阶中心矩;σ为标准差。

在一般情形下,当统计数据为右偏分布时,Sk>0,且Sk值越大,右偏程度越高;当统计数据为左偏分布时,Sk<0,且Sk值越小,左偏程度越高。当统计数据为对称分布时,显然有Sk=0。

(8)期货市场偏度扩展阅读

对数正态分布具有如下性质:

(1)正态分布经指数变换后即为对数正态分布;对数正态分布经对数变换后即为正态分布。

(2)γ,t是正实数,X是参数为(μ,σ)的对数正态分布,则Y=γXᵗ仍是对数正态分布,参数为(tμ+ln(γ),tσ)。

(3)对数正态总是右偏的。

(4)对数正态分布的均值和方差是其参数(μ,σ)的增函数。

(5)对给定的参数μ,当σ趋于零时,对数正态分布的均值趋于exp(μ),方差趋于零。

Ⅸ 偏度是什么意思在概率中有什么使用价值

金融数据的尖峰厚尾特征是相比较标准正态分布来说的,标准正态分布的偏度为0,峰度为3,通常做实证分析时,会假设金融数据为正态分布,这样方便建模分析,但是实证表明,很多数据并不符合正态分布

Ⅹ 服从正态分布 偏度、峰度要满足什么要求

正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。

μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。

σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

(10)期货市场偏度扩展阅读:

一、图形特征

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

二、历史发展

正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。

但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。

阅读全文

与期货市场偏度相关的资料

热点内容
p2b理财范 浏览:120
利丰集团融资 浏览:450
Abs双信托 浏览:877
温州融资经验 浏览:242
金融资金助力企业 浏览:939
思路融资 浏览:857
武汉期货女 浏览:948
理财知识篇 浏览:849
众筹融资被骗 浏览:709
政府性融资担保体系建设问题 浏览:616
我国有哪些金融期货产品 浏览:986
为什么要研究过度融资 浏览:72
海银财富理财可信吗 浏览:828
债务融资和股权融资 浏览:157
融资余额1亿 浏览:861
理财结存 浏览:374
什么是期限匹配融资策略 浏览:331
a轮融资规模 浏览:643
外汇平台靠谱吗 浏览:934
信托开单 浏览:246