㈠ 生物进化历史
生命的起源与演化是和宇宙的起源与演化密切相关的。生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化。资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物。在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子。通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式。
38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的。现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能是化学无机自养。澳大利亚西部瓦拉伍那群中35亿年前的微生物可能是地球上最早的生命证据。
原始地壳的出现,标志着地球由天文行星时代进入地质发展时代,具有原始细胞结构的生命也开始逐渐形成。但是在很长的时间内尚无较多的生物出现,一直到距今5.4亿年前的寒武纪,带壳的后生动物才大量出现,故把寒武纪以后的地质时代称为显生宙。
在中世纪的西方,《圣经》上描绘的上帝,在七天之内造就万物之说,也是非常流行。今天看来,生命起源并不像这些古老传说,或神话描绘的那样,但表明了人类长期以来,对生命起源之谜倾注了极大地热情和关注。但生命起源应该是怎样发生的?科学又是怎样对这一千古之谜进行探索的?我们已经取得了哪些进展?还有哪些问题没有解决?
首先,生命起源之说,第一个谜是生命的时间,起源的时间问题。在中世纪的西方,人们对《圣经》的上帝造人的故事是深信不疑的。在1650年,一位爱尔兰大主教根据圣经上所描述的,计算出上帝创世的确切时间是公元前4004年,而另一位牧师甚至把创世时间更加精确地计算到公元前4004年10月23号上午九点钟。也就是说,生命起源距今是六千年前,这当然不是真的,而真的是什么呢?真的就是用科学的回答,科学是怎么回答这个生命起源的时间呢?那就是说用化石,是保存在岩石中的化石来回答。我们知道,生物死亡后,它们的遗迹在适当的条件下,就保存在岩石之中,我们把它们称作化石。地质历史中形成的岩层,就像一部编年史书,地球生物的演化历史,就深深埋藏在这些岩石之中,年代越久远的生物化石,就保存在岩层的最底层。
迄今为止,我们发现了最古老的生物化石是来自澳大利亚西部,距今约三十五亿年前的岩石,这些化石类似于现在的蓝藻,它们是一些原始的生命,是肉眼看不见的。它的大小只有几个微米,到几十个微米。因此我们可以说,生命起源它不晚于三十五亿年。同时我们知道地球的形成年龄大约在46亿年前,有这两个数据我们就可以看到生命起源的年龄,大致可以界定在46亿年到35亿年之间。今天,随着科学的发展,地质学家认为,在地球形成的早期,地球受到了大量的小行星和陨石的撞击,它是不适合生命的生存。与其说当时地球上有生命,还不如说它在毁灭生命,因此地球上生命起源的时间,它不早于40亿年。另外,在格陵兰的38.5亿年的岩石中发现了碳,这个碳的话,我们知道,碳分两种,一个无机碳、一个有机碳。另外,这个碳的话,它有重碳和轻碳之分,因此我们可以根据这个碳之中的轻碳和重碳之比,就来可以推测这些碳的来源。科学家根据碳的同位素分析,推测这些碳它是有机碳,是来源于生物体。也就是说,这样我们把生命起源的时间大大缩短了,也就是在距今40亿年到38亿年之间,自从地球上生命起源之后,一直到现在45亿年,就是生生不息的生命演化史。
好,首先我们现在已经有了生命起源的时间概念,是距今40亿年到38亿年之间。那生命是怎样起源的?它在什么地方起源的?这样我们不得不回顾一些有关生命起源的假说。
第一个是创世说,在《旧约全书》的第一章写到,上帝在七天之内创造了世间之万物,在中世纪的西方大家普遍接受这个观念,可以说一直到现在,这种观念还被很多人接受,当然这也不是真的。第二个呢,是自生论,比如说希腊人认为,昆虫生于土壤,春天万象更新,种子从泥土里萌发,昆虫从去年留下的卵壳中破壳而出。但这不是生命的起源,而是生命的延续,可以说这个自生论,现在已经被彻底抛弃了。与这个类似的说法,还有比如说埃及人认为生命来自于尼罗河,在中国古代也有腐草生萤之说。
第三个有关生命起源的假说,就是有生源论,这个在19世纪的西方也相当地流行,有生源论认为,生命是宇宙生来就固有的,你要问我生命从哪里来的,你首先给我回答一个问题,宇宙怎么起源的?物质怎么来的?你给我回答了物质是怎么来的,生命我就可以说是从哪儿来的,其实这是一个不可知论。在20世纪的后半叶,有生源论逐渐发展到现在的宇宙胚种论,直到现在,有许多科学家认为,生命必须的酶,像蛋白质,和遗传物质的形成,需要数亿年的时间,在地球早期并没有可以完成这些过程的充足时间段。因为它就两亿年,因此他们认为生命一定是以孢子或者其他生命的形式,从宇宙的某个地方来到了地球,这种观念也是有一定的依据的。
㈡ 古生物的演化
地球上最早出现的异养型原核生物细菌,经过不断地分化和发展,终于又出现了能够进行光合作用、从无机物合成有机养料的自养型原核生物蓝藻。蓝藻和细菌作为早期生物界的合成者和分解者,组成物质循环的两个基本环节,形成了一个完整的生态系统。从异养到自养是早期生物演化的另一次重大的飞跃。
蓝藻是最早出现的放氧生物,使得地球上原始大气中氧气浓度不断增加,形成含氧大气层。在高空出现的臭氧层,吸收了太阳的紫外辐射,改变了整个生态环境,为喜氧生物提供了有利的生活环境。于是生物便由厌氧转入喜氧,提高了能量代谢的效能。在加拿大甘弗林组中,发现了完好的距今约20亿年的细菌和蓝藻化石。 在生物演化史上称为“海洋藻类时代”和“海洋无脊椎动物时代”。起始于距今6亿年,延续了约1.7亿年。
植物仍以海生藻类为主,但很难保存为完好的化石。由于植物进化速度远较动物缓慢,早古生代植物界一直停留在藻类阶段。藻类的大量繁育不仅为海洋无脊椎动物提供了丰富的食物资源,而且通过叶绿素光合作用,放出氧气,为海洋无脊椎动物的发展,准备了有利的生活环境。
继元古宙末期埃迪卡拉后生裸露动物群之后,于早期,出现了地史上最早具钙质硬壳的小壳动物群,包括软舌螺、单板类、腹足类、腕足类等。这与当时海水富含钙质有关。由于发生了矿化事件,使得寒武纪保存的化石突然增多。这一时期称为“非三叶虫时代”。进入三叶虫时代后,在中国云南发现了距今5.7亿年的澄江动物群,主要由水母、三叶虫、金臂虫、非三叶虫节肢动物、蠕形动物、海绵、无铰腕足类、软舌螺和藻类等组成,是目前世界上保存最早的软体的多门类动物群,这一动物群的发现还表明后生动物在寒武纪开始前已经历了一段分化、辐射的历史过程。随后,腔肠动物、古杯类、软体动物(双壳、腹足、头足)、棘皮动物、牙形刺、笔石等相继出现。其中以三叶虫演化迅速、生态分异明显,分布遍及全球整个海域,在动物界中占绝对优势,因而称寒武纪为“三叶虫时代”。古杯类是地史上最早的造礁动物,生活于早寒武世,中寒武世早期绝灭,是生物史上第一个完全绝灭的造礁动物门类。
是自然环境有利于海洋无脊椎动物继续发展的时代,层孔虫、苔藓虫等先后出现,笔石、腕足类、鹦鹉螺等显著分异。树形笔石继续发展,一部分固着在海底生活,而大部分远运洋漂浮生活,遍及全球海域。到早奥陶世中期,正笔石类兴起、演化迅速,是奥陶纪的重要分带化石。腕足类出现了分异的第一个高峰期,在数量上占重要地位。鹦鹉螺开始出现于晚寒武世,到奥陶纪分异明显,种类繁多,个体较大,是营游泳生活的凶猛食肉动物。珊瑚最早出现于寒武纪,至中、晚奥陶世大量繁育,同层孔虫、苔藓虫等一起,是温暖浅海的重要造礁动物。海洋无脊椎动物新类群的出现和多样化,加剧了浅海陆棚区的生存竞争。
延续时间较短,生物界来源于奥陶纪,但有新的发展。其中最重要的生物事件是,三叶虫显著衰退,笔石向简化方向演变,单笔石兴起并大量发展。珊瑚以床板珊瑚和日射珊瑚为主,出现了特有的链珊瑚。腕足类出现了内部构造更为复杂的五房贝和展翼状外壳的石燕贝。鹦鹉螺显著减少但仍有代表。节肢动物中形体最大的板足鲎类最早出现于奥陶纪,到志留纪大量繁育,志留纪末,由于受加里东运动的影响,海水逐渐退去。部分生物为了适应新的生活环境,由海洋向陆地生活转变。 由于志留纪末期大规模海退,陆地面积逐渐扩大,从滨海浅滩绿藻植物演化而来的陆生裸蕨植物最早出现于晚志留世,到早泥盆世开始大量生活在滨海沼泽低地,中泥盆世后期出现根、茎和叶分化的原始石松类和有节类,到晚泥盆世在自然选择的作用下,裸蕨迅速绝灭了。一般称志留纪末到中泥盆世为“裸蕨植物时代”。到石炭、二叠纪陆生植物进一步发展,出现了石松、节蕨、真蕨和原始裸子植物的种子蕨和科达类,这一时期被称为“蕨类植物时代”。从晚石炭世到二叠纪各类植物极度繁茂,由于适应不同的气候条件,逐渐形成明显的植物地理分区。
陆生植物发展之后,与植物存在着密切关系的昆虫大量繁育,它们相互依存,相互制约,平行发展。最早的昆虫类是最原始的无翅类型,最早的无翅类化石出现于。出现了现知最早的有翅昆虫,当时最繁盛的昆虫是现已绝灭的古网翅类。昆虫区系发生显著的变化,直翅类明显缩小,许多现代类型开始出现。 裸子植物虽在石炭——二叠纪时已开始出现,但最繁盛的时期是,故中生代被称为“裸子植物时代”。这一时期的植物群以苏铁、本内苏铁和松柏类为主。北半球还有较多的银杏类,南半球则以松柏类占优势。从蕨类植物演化到裸子植物,标志着从孢子繁植转化为种子繁殖。裸子植物用种子繁殖适于陆上生活和传播,扩大了生存空间,形成了地球上的广大森林,为爬行动物的发展,提供了有利的生活环境。
石炭——二叠纪时,从两栖动物迷齿类演化出来的蜥螈形类,坚持陆生方向,很可能是爬行动物的祖先。经过长期演化,产生了能够适应干旱陆地环境的羊膜卵。于是,爬行动物诞生了。从两栖类水中产卵、水中受精发展到爬行动物的体内受精和产生羊膜卵,是脊椎动物演化史上的一次重大飞跃。
陆生爬行动物中以恐龙(Dinosaur)为主要代表。恐龙最早出现于中三叠世,分蜥臀类和鸟臀类两大支系,是中生代占绝对优势的陆地脊椎动物。由于爬行动物大量繁殖,除绝大部分在陆地上生活外,有的重返水域成为水生爬行动物,如开始的鱼龙类、和的蛇颈龙类。有的向空中发展成为飞翔的爬行动物,叫翼龙类,如德国侏罗系中发现的喙嘴龙(Rhamphorhyn-chus),靠前肢的两张翼膜飞翔。由喙嘴龙分化出另一类飞翔爬行动物叫翼指龙(Ptercdactylus),主要生活在晚侏罗世到白垩纪。
爬行动物是中生代地球上占绝对优势的脊椎动物,故称中生代为“爬行动物时代”或“龙的时代”。到白垩纪末期,全球出现了显著的地质事件,使地表自然环境发生巨大变化。由于恐龙不能适应当时迅速变化的环境,随同整个爬行动物的大衰退,无论陆生的、水生的或飞翔的恐龙,到白垩纪末都相继绝灭了。爬行动物中残留并延续至今天的,仅有喙头蜥类、鳄类、龟鳖类和有鳞类(蛇和蜥蜴)。
对恐龙的绝灭尚有不同的解释。不少人认为恐龙的集群绝灭与地外成因的灾变事件有关,如超新星爆发、小天体撞击地球等。 鸟类是从爬行动物分化出来的一个旁支。鸟类的脑和神经系统发达,心脏分隔完全,是恒温的脊椎动物。从变温的爬行动物转化为恒温的鸟类,是脊椎动物演化史上的一次重大飞跃。恒温动物(鸟类和哺乳动物)的体温相对稳定,不受外界气温的影响,增强了对气候环境的适应性,扩大了地理分布范围。
鸟类最早的化石代表是德国晚侏罗世的始祖鸟(Ar-chaeopteryx),它是由爬行动物向鸟类过渡的中间类型,是鸟类的最早代表。此外,1986年在美国得克萨斯州发现一新的鸟化石,命名为Protoavis,意为“原始的鸟”。其时代为三叠纪,比始祖鸟早,但比始祖鸟更接近现代鸟类。因此有人认为始祖鸟可能是鸟类系统演化中的一个旁支。有关鸟类的起源和早期发展有待深入研究。 早白垩世晚期出现了被子植物,中、晚白垩世很快繁育起来,新生代时极为繁盛,代替了裸子植物,成为植物界中最高级的类群,开创了被子植物时代。关于被子植物的起源迄今尚无定论。
被子植物有比裸子植物更进步的内部构造和完善的生殖器官。被子植物的迅速发展和更广泛的地理分布,为依赖植物为生的动物界提供了丰富的食物资源,促进了昆虫、鸟类和哺乳动物的大发展。人类生活也与被子植物的发展密切相关。
最早的哺乳动物是从三叠纪的似哺乳爬行动物中分化出来的。进入新生代,由于板块的分离或聚合,气候的分化,被子植物的迅速发展和广泛分布,促使哺乳动物迅速分化、辐射,得到了空前发展,取代了爬行动物,在地球上居于优势。从而脊椎动物的演化又进入了一个更高级的阶段──哺乳动物时代。从爬行动物的变温、卵生发展为哺乳动物的恒温、胎生和哺乳,以及高度发达的神经系统和感觉器官,是脊椎动物演化史上的一次重大飞跃。
一般认为中生代的古兽类是白垩纪和新生代有袋类和有胎盘类的共同祖先。白垩纪时,有袋类广泛分布于世界各大陆,第三纪繁盛于南美,而现代仅生活在澳大利亚。有胎盘类是比有袋类更高等的哺乳动物。最早的有胎盘类是白垩纪出现的小型食虫类。新生代后得到空前发展,分化、辐射出许多分支。其中一支为适合于飞行生活的翼手类和蝙蝠,是从古新世一类树栖生活的食虫类演化而来的。另一支是适应于海洋生活的鲸类,保留了从陆生祖先继承来的肺呼吸,是一种进化趋同的现象。啮齿类包括现生的松鼠、河狸、家鼠等,是兽类中演化最成功的一类,无论在种类、数量、分布地区,在兽类中都占优势地位。食肉类又分为古食肉类、新食肉类和鳍脚类。古食肉类大量辐射发生在古新世和始新世。始新世末期新食肉类繁盛起来,如现生的猫、虎、狗等。新食肉类出现不久,海生鳍脚类(海狮、海豹、海象)开始出现。
最原始的哺乳动物主要是食虫的。古老的有蹄动物踝节类也是从原始食虫类演化而来的,是由食虫发展到食草过程中最原始的一个分支,是后来大多数有蹄动物,包括马、貘、犀等奇蹄类和猪、牛、羊等偶蹄类的共同祖先。
象的祖先可能由早期的踝节类演化而来。最早的象是发现于北非晚始新世到早渐新世的始祖象(Moerither-ium),体形大小如猪,第二对门齿还没有形成象类特有的大门牙。古乳齿象(Palaeomastodon)是始祖象的直接后裔,它的身体比始祖象增大了约一倍,上门牙伸长,第四纪开始多数绝灭,少数生活到早更新世。真象类是从乳齿象演化出来的,又分为剑齿象类和真象类。中国象类化石很多,如甘肃早更新世的剑齿象化石被命名为黄河古象,真象化石有广泛分布于华北和东北晚更新世的猛犸象。象类演化趋势是个体增大、鼻长和大象牙的不断增长。今天残存的仅有非洲象和印度象。
奇蹄类中以马的演化研究的最清楚。马的最早代表是始新世早期的始马(Hyracotherium),大小如现代的狐狸,前足有4个脚趾,后足有5个脚趾。渐新世出现了中马(Mesohippus),前、后足只有3个脚趾,都着地。始马和中马都生活在森林里。中新世出现了草原古马(Mery-chippus),前、后足都只有3个脚趾,只中间1个趾着地,两侧的已经退化。从草原古马开始,马类才进化到草原奔驰生活。到上新世,开始出现单趾马,命名为上新马(Pliohippus)。到第四纪出现了现代马(Equus)。马类的演化趋势是,个体增大,腿和脚伸长,侧趾退化,中趾加强,前臼齿臼齿化,颊齿齿冠增高。
偶蹄类从始新世开始出现,经过渐新世、中新世和上新世大量发展,从更新世到现在,在食草动物中无论在种类上和数量上都占优势地位。偶蹄类分为猪形类、骆驼类和反刍类。猪形类出现于始新世早期,都是些小形偶蹄类,如始新世的双锥齿兽,戈壁猪形兽等。从渐新世到上新世体形变大。更新世出现了与现代野猪相似的猪。骆驼出现于始新世晚期,也是小形的偶蹄类。从始新世的始驼,经过渐新世的鹿驼,到中新世和上新世的原驼,一直发展到现代亚洲的真驼和南美的羊驼。反刍类包括鼷鹿、鹿、长颈鹿、牛、羊、羚羊等。这一类的主要特征是消化系统复杂,能很好地加工和消化粗糙的草类。鼷鹿是最原始的反刍类。在中国发现的鹿化石很多,有中新世的皇冠鹿、上新世的上新鹿、更新世的四不象鹿和大角鹿等。 人类在动物界中的近亲是类人猿(简称猿)。现代的类人猿有长臂猿、猩猩、大猩猩和黑猩猩。类人猿无论在外貌和面部表情上,还是身体内部的结构上都与人相似。类人猿中又以黑猩猩与人最接近。
根据化石资料,从猿到人经过森林古猿(Dryopithe-cus)、腊玛古猿(Ramapithecus)、南方古猿(Australo-pithecus)、人(Homo)4个阶段。森林古猿在渐新世晚期中新世中期繁荣于欧、亚、非洲大陆,是现生各种猿类的祖先。腊玛古猿大约在1500万年前由一种森林古猿演化而来, 生存在距今1500~800万年前。这种化石最早(1932)发现于印度西瓦立克山,以后在非洲、欧洲和中国云南均有发现。一般认为腊玛古猿是从猿到人过渡阶段的早期代表,是最早的人科成员。但近年来新发现的化石却增加了腊玛古猿是人科的怀疑,有人认为是一种进步的猿类。南方古猿化石最早(1924)发现于南非,南方古猿大约生存于距今300~100万年前,它的原始类型可能是从猿到人的过渡阶段晚期的代表。由南方古猿再进一步发展成现代人。从猿到人的演化过程中,劳动起着重要的作用。由于劳动使身体的姿势由半直立变为直立。劳动和语言又促进了脑的发展,而脑的发展又加速了从猿到人的转变。 人类发展的过程一般分为4个阶段:早期猿人阶段、晚期猿人阶段、早期智人阶段和晚期智人阶段。
早期猿人阶段。出现于更新世早期,以坦桑尼亚距今175万年的“能人”(Homo habilis)为代表。这一阶段的人类已具人的基本特点,但还有许多原始性。能直立行走,还能制造简单的砾石工具。外貌像猿,但脑量达700毫升,比现代猿大。
晚期猿人(直立人)阶段。出现于更新世中期,以北京猿人(Homo erectus pekinensis)和爪哇猿人(Homo ercetus Java)为代表。与北京猿人大致同时的还有蓝田猿人(Homo erectus lantianensis)和海德堡人(Homo erectus heidelber ensis)等。这一时期的猿人,身体形态已有明显的进步性,身体像人,脑颅像猿,但脑量较大,在715~1225毫升之间,直立行走的姿势已与现代人接近。在文化上已能制造较进步的石器,并开始用天然火。比早期猿人分布范围更广泛。
早期智人(古人)阶段。古人生存于距今10~20万年至5万年前,广泛分布于亚、非、欧洲的许多地区,以德国的尼安德特人(Homo sapiens neanderthalensis)为代表。中国发现的古人化石有广东的马坝人、湖北的长阳人、山西的丁村人。古人的脑量已达现代人的水平,制造石器,靠渔猎生活,能人工取火。丁村人在石器打制技术上比北京猿人有了显著提高,加工更加精细。
晚期智人(新人)阶段。出现于近5万年内,以法国的克罗马侬人(Homo sapiens sapiens)为代表。在中国有北京周口店的山顶洞人,内蒙的河套人,广西的柳江人,四川的资阳人。新人在形态上已非常像现代人,在文化上已有雕刻与绘画的艺术,并出现了装饰品。新人分布范围比古人更广泛。新人化石不仅发现于亚、欧、非洲的广大地区,在大洋洲和美洲也有发现。在新人阶段,现代人种包括黄种、白种、黑种和棕种,开始分化和形成,广泛分布于世界各地。柳江人是现代黄种人的祖先,克罗马侬人是现代欧洲白种人的祖先。

㈢ 晚古生代气候特点
①中生代距今约2.5~0.7亿年,包括三叠纪、侏罗纪和白垩纪。由于陆地面积扩大,地形和气候条件逐渐变得复杂。喜湿热的蕨类植物因不适应冷热多变的大陆环境而逐渐衰退,更能适应陆地环境且以种子为繁殖形式的裸子植物迅速发展,因此,古生代又被称为“裸子植物时代”,也是重要的成煤期。巴列姆阶时期的气候出现寒冷的趋势,这个变化自侏罗纪最后一期就已开始。高纬度地区的降雪增加,而热带地区比三叠纪、侏罗纪更为潮湿。但是,冰河仅出现高纬度地区的高山,而较低纬度仍可见季节性的降雪。
在巴列姆阶末期,气温开始上升,持续到白垩纪末期。气温上升的原因是密集的火山爆发,制造大量的二氧化碳进入大气层中。中洋脊沿线形成许多热柱,造成海平面的上升,大陆地壳的许多地区由浅海覆盖者。位在赤道地区的特提斯洋,有助于全球暖化。在阿拉斯加州与格陵兰发现的植物化石,以及自白垩纪南纬15度地区发现的恐龙化石,证明白垩纪的气温相当温暖。
热带地区与极区间的温度梯度平缓,原因可能是海洋的流动停滞,并造成行星风系的虚弱。分布广泛的油页岩层,以及缺氧事件,可证实海洋的流动停滞。根据沉积层的研究指出,热带的海水表面温度约为摄氏42°,高于现今约摄氏17°;而全球的海水平均表面温度为摄氏37°。而海洋底层温度高于目前的温度约摄氏15到20°。
②最近一百万年间,你指的是新生代吗?新生代是地球历史上最新的一个地质时代,它从7000万年前开始一直持续到今天。新生代可以划分为第三纪和第四纪两个纪。
③第四纪地质史上有两件大事:一件是发生大规模的冰期,一件是人类的出现。这一时期气候发生剧烈变化,并发生多次冰川作用,冰期和间冰期不断交替,出现气候寒冷和温暖时期的交替。
查看全文
㈣ 什么是古生物
古生物生存在地球历史的地质年代中、而现已大部分绝灭的生物。包括古植物(芦木、鳞木等)、古无脊椎古生物(三叶虫)动物(货币虫、三叶虫、菊石等)、古脊椎动物(恐龙、始祖鸟、猛犸等)。古生物死后,除极少数(如冻土中的猛犸,琥珀中的昆虫)由于特殊条件,仍保存原有的组织结构外,绝大多数经过钙化、碳化、硅化,或其他矿化的填充和交替石化作用,形成仅具原来硬体部分的形状、结构、印模等的化石。
㈤ 这是什么古生物
异平齿龙,晚三叠纪,欧洲.
㈥ 爬行动物时代的古生物的详细介绍
古生物概述
古生物生存在地球历史的地质年代中、而现已大部分绝灭的生物。包括古植物(芦木、鳞木等)、古无脊椎动物(货币虫、三叶虫、菊石等)、古脊椎动物(恐龙、始祖鸟、猛犸等)。古生物死后,除极少数(如冻土中的猛犸,琥珀中的昆虫)由于特殊条件,仍保存原有的组织结构外,绝大多数经过钙化、碳化、硅化,或其他矿化的填充和交替石化作用,形成仅具原来硬体部分的形状、结构、印模等的化石。
化石经过自然界的作用,保存于地层中的古生物遗体、遗物和它们的生活遗迹。大多数是茎、叶、贝壳、骨骼等坚硬部分,经过矿物质的填充和交替作用,形成仅保持原来形状、结构以至印模的钙化、碳化、硅化、矿化的生物遗体、遗物或印模。也有少数是未经改变的完整遗体,如冻土中的猛犸、琥珀中的昆虫等。化石是古生物学的主要研究对象。
自从古生物学出现后,人类就认识到曾有过大规模的生物绝灭现象。多细胞生物在6亿年的历史进程中,共经历了五次主要的大规模绝灭事件。在所有大绝灭事件中,规模最大的一次发生在二叠纪末,最引人注目的是白垩纪末恐龙的绝灭。
[编辑本段]古生物命名
所有经过研究的生物,都要给予科学的名称,即学名(scientific name)。按国际命名法规,生物各级分类等级的学名,改用拉丁字或拉丁化文字。属和属级以上的名称采用单名,即用一个拉丁词命名,第一字母大写。种的名称采用双名法(binomen),即由种的本名和其从属的属名组成,属名在前,种本名在后。种、亚种及变种本名第一个字母小写。属和属以下名称,在印刷和书写时,需用斜体字,属以上名称用正体字。为了便于查阅,在各级名称之后,用正体字注以命名者的姓氏(应为拉丁字母拼缀)和命名时的公历年号,两者间以逗点分隔。若命名者不止一人,用拉丁连结词et(和)连接之。
物种既是生物分类的基本单位,也是生物进化的基本单位。生物进化的实质,就是物种的起源和演变。从生物学角度来认识物种,认为物种基本结构是居群,而不是个体。
生物命名法中一条重要原则是优先律(law of priority),即生物的有效学名是符合国际动物、植物命名法所规定的最早正式刊出的名称。遇到同一生物由两个或更多名称即构成异名(synonym),或不同生物共有一个名称即同名(homomym),应以优先律选取最早正式发表的名称。例如,横板珊瑚一个属Tetrapora(方管珊瑚)原为矢部长克(H.Yabe)和早坂一郎(I.hayasaka)于1915年所首创(Tetrapora Yabe et Hayasaka,1915年)。到了1940年,古生物研究者发现,该属名早在1857年用于苔藓动物一个属方管苔藓虫(Tetrapora Queenstedt,1857年)。横坂珊瑚Tetrapora 事后定的,依优先律应予废弃,而用另一新的属名Hayasakaia(早坂珊瑚)来代替。
[编辑本段]古生物演化
(1)生命的起源
一般认为生命是由化学物质从无机到有机演化而来的。原始大气富含甲烷、氨、二氧化碳、水汽等,这些气体在外界高能(紫外线、闪电、高温)的作用下,首先合成氨基酸、脂肪酸等小分子有机化合物。这些小分子有机化合物,在适当的条件下,可以进一步结合成更复杂的蛋白质、核酸等大分子有机物质,经过进一步演化,终于产生了能够不断地进行自我更新的、结构非常复杂的多分子体系,由此产生了原始生命。当非细胞形态的原始生命在地球上出现时,由于大气中仍然缺氧,因此,它们一定是厌氧和异养类型。地球约形成于距今46亿年,从澳大利亚发现的距今35亿年的瓦拉翁纳群中的丝状细菌化石表明,生命的起源亦即化学演化过程,应发生在地球形成后约11亿年。生命的产生是地球演化史上的一次最大的飞跃,使得地球历史从化学演化阶段推向生物演化阶段。
(2)原核生物的出现
最初的生命应是非细胞形态的生命,为了保证有机体与外界正常的物质交换,原始生命在演化过程中,形成了细胞膜,出现了细胞结构的原核生物。细胞是生命的结构单元、功能单元和生殖单元,细胞的产生是生命史上的一次重大的飞跃。当前,地球上发现最早具细胞结构的可靠化石是瓦拉翁纳群中的丝状细菌化石。
(3)藻菌生态系统的形成
地球上最早出现的异养型原核生物细菌,经过不断地分化和发展,终于又出现了能够进行光合作用、从无机物合成有机养料的自养型原核生物蓝藻。蓝藻和细菌作为早期生物界的合成者和分解者,组成物质循环的两个基本环节,形成了一个完整的生态系统。从异养到自养是早期生物演化的另一次重大的飞跃。
蓝藻是最早出现的放氧生物,使得地球上原始大气中氧气浓度不断增加,形成含氧大气层。在高空出现的臭氧层,吸收了太阳的紫外辐射,改变了整个生态环境,为喜氧生物提供了有利的生活环境。于是生物便由厌氧转入喜氧,提高了能量代谢的效能。在加拿大甘弗林组中,发现了完好的距今约20亿年的细菌和蓝藻化石。
(4)真核生物的出现
从原核到真核是生物演化从简单到复杂的转折点,最早具细胞的生物是单细胞原核生物。原核细胞没有核膜,没有细胞器,结构简单。真核细胞具有核膜,整个细胞分化为细胞核和细胞质两部分。细胞核内具有染色体,成为遗传中心,细胞质内进行蛋白质合成,成为代谢中心。由于细胞结构的复化,增强了变异性,使得真核生物能够向高级体制发展。现已发现距今约13亿年的美国加利福尼亚的贝克泉组的白云岩中的原核蓝藻和真核绿藻。绿藻还发现于距今约10亿年的澳大利亚的苦泉组。绿藻是最早具有真核的生物。
(5)动物的出现
随着真核生物的出现,动、植物开始分化和发展。动物的出现,形成了一个新的三极生态系统。绿色植物(真核植物和原核蓝藻)通过叶绿素光合作用制造食物,是自然界的生产者;细菌和真菌是自然界的分解者;动物是自然界的消费者。地史上最早的动物化石是距今6~7亿年澳大利亚的伊迪卡拉动物群,其中以腔肠动物的似水母类、海鳃类、环节动物和少量节肢动物为主,还有一部分分类位置未定的疑难化石,很可能代表地史上曾短暂出现而又迅速绝灭的类群。从动物的分化水平看,伊迪卡拉动物群已是较后期的类型,不是动物的原始代表。这标志着后生动物在早已出现,并经历了一段相当长的分化演变过程。
(6)洋藻类和无脊椎动物时代
在生物演化史上称为“海洋藻类时代”和“海洋无脊椎动物时代”。起始于距今6亿年,延续了约1.7亿年。
植物仍以海生藻类为主,但很难保存为完好的化石。由于植物进化速度远较动物缓慢,早古生代植物界一直停留在藻类阶段。藻类的大量繁育不仅为海洋无脊椎动物提供了丰富的食物资源,而且通过叶绿素光合作用,放出氧气,为海洋无脊椎动物的发展,准备了有利的生活环境。
继元古宙末期伊迪卡拉后生裸露动物群之后,于早期,出现了地史上最早具钙质硬壳的小壳动物群,包括软舌螺、单板类、腹足类、腕足类等。这与当时海水富含钙质有关。由于发生了矿化事件,使得寒武纪保存的化石突然增多。这一时期称为“非三叶虫时代”。进入三叶虫时代后,在中国云南发现了距今5.7亿年的澄江动物群,主要由水母、三叶虫、金臂虫、非三叶虫节肢动物、蠕形动物、海绵、无铰腕足类、软舌螺和藻类等组成,是目前世界上保存最早的软体的多门类动物群,这一动物群的发现还表明后生动物在寒武纪开始前已经历了一段分化、辐射的历史过程。随后,腔肠动物、古杯类、软体动物(双壳、腹足、头足)、棘皮动物、牙形刺、笔石等相继出现。其中以三叶虫演化迅速、生态分异明显,分布遍及全球整个海域,在动物界中占绝对优势,因而称寒武纪为“三叶虫时代”。古杯类是地史上最早的造礁动物,生活于早寒武世,中寒武世早期绝灭,是生物史上第一个完全绝灭的造礁动物门类。
是自然环境有利于海洋无脊椎动物继续发展的时代,层孔虫、苔藓虫等先后出现,笔石、腕足类、鹦鹉螺等显著分异。树形笔石继续发展,一部分固着在海底生活,而大部分远运洋漂浮生活,遍及全球海域。到早奥陶世中期,正笔石类兴起、演化迅速,是奥陶纪的重要分带化石。腕足类出现了分异的第一个高峰期,在数量上占重要地位。鹦鹉螺开始出现于晚寒武世,到奥陶纪分异明显,种类繁多,个体较大,是营游泳生活的凶猛食肉动物。珊瑚最早出现于寒武纪,至中、晚奥陶世大量繁育,同层孔虫、苔藓虫等一起,是温暖浅海的重要造礁动物。海洋无脊椎动物新类群的出现和多样化,加剧了浅海陆棚区的生存竞争。
延续时间较短,生物界来源于奥陶纪,但有新的发展。其中最重要的生物事件是,三叶虫显著衰退,笔石向简化方向演变,单笔石兴起并大量发展。珊瑚以床板珊瑚和日射珊瑚为主,出现了特有的链珊瑚。腕足类出现了内部构造更为复杂的五房贝和展翼状外壳的石燕贝。鹦鹉螺显著减少但仍有代表。节肢动物中形体最大的板足鲎类最早出现于奥陶纪,到志留纪大量繁育,志留纪末,由于受加里东运动的影响,海水逐渐退去。部分生物为了适应新的生活环境,由海洋向陆地生活转变。
(7)向陆地生活转变和发展
由于志留纪末期大规模海退,陆地面积逐渐扩大,从滨海浅滩绿藻植物演化而来的陆生裸蕨植物最早出现于晚志留世,到早泥盆世开始大量生活在滨海沼泽低地,中泥盆世后期出现根、茎和叶分化的原始石松类和有节类,到晚泥盆世在自然选择的作用下,裸蕨迅速绝灭了。一般称志留纪末到中泥盆世为“裸蕨植物时代”。到石炭、二叠纪陆生植物进一步发展,出现了石松、节蕨、真蕨和原始裸子植物的种子蕨和科达类,这一时期被称为“蕨类植物时代”。从晚石炭世到二叠纪各类植物极度繁茂,由于适应不同的气候条件,逐渐形成明显的植物地理分区。
陆生植物发展之后,与植物存在着密切关系的昆虫大量繁育,它们相互依存,相互制约,平行发展。最早的昆虫类是最原始的无翅类型,最早的无翅类化石出现于。出现了现知最早的有翅昆虫,当时最繁盛的昆虫是现已绝灭的古网翅类。昆虫区系发生显著的变化,直翅类明显缩小,许多现代类型开始出现。
(8)鱼类的出现和发展
鱼类包括有颌类和无颌类。无颌类包括头甲鱼形类和鳍甲鱼形类。头甲鱼形类包括现生的七鳃鳗和盲鳗以及古生代有甲胄的种类;鳍甲鱼形类包括已绝灭的异甲鱼和花麟鱼。无颌类最早的类群是异甲类。发现于北美落基山区中奥陶统的异甲鱼,是脊椎动物最早的化石代表。晚志留世出现了从无颌类分化出来的最早具颌的棘鱼类和盾皮鱼类。有了上下颌,就不仅是被动摄食微小有机物,而可主动追捕大的食物了。硬骨鱼类包括总鳍鱼类、肺鱼类和辐鳍鱼类,最早出现于晚志留世晚期,与棘鱼类有共同的祖先。盾皮鱼类最早出现于晚志留世,一直生存到早石炭世,以泥盆纪最繁盛。软骨鱼类出现于早泥盆世晚期,可能与盾皮鱼类有共同的祖先。泥盆纪时鱼类极为繁盛,故被称为“鱼类时代”。硬骨鱼类在现代鱼类中占绝对优势,被称为“水中的主人”。从侏罗纪起,软骨鱼类出现了,如鲨鱼和鳐,还有生活在深海里的银鲛。
(9)两栖类的出现
总鳍鱼在晚泥盆世时登陆, 是陆生脊椎动物的最早类型。脊椎动物在登上陆地的过程中首先要解决呼吸和行动问题总鳍鱼已具有原始肺的构造,肉质偶鳍可以在地上爬行。最早的两栖类代表是发现于格陵兰和北美晚泥盆世的迷齿类鱼石螈(Ichthyostega),具明显的从总鳍鱼类向两栖类过渡的中间类型性质。石炭——二叠纪是两栖类最繁盛的时期,被称为“两栖动物时代”。残存下来的现代两栖类有蝾螈、青蛙等。
(10)裸子植物和爬行运动
裸子植物虽在石炭——二叠纪时已开始出现,但最繁盛的时期是,故中生代被称为“裸子植物时代”。这一时期的植物群以苏铁、本内苏铁和松柏类为主。北半球还有较多的银杏类,南半球则以松柏类占优势。从蕨类植物演化到裸子植物,标志着从孢子繁植转化为种子繁殖。裸子植物用种子繁殖适于陆上生活和传播,扩大了生存空间,形成了地球上的广大森林,为爬行动物的发展,提供了有利的生活环境。
石炭——二叠纪时,从两栖动物迷齿类演化出来的蜥螈形类,坚持陆生方向,很可能是爬行动物的祖先。经过长期演化,产生了能够适应干旱陆地环境的羊膜卵。于是,爬行动物诞生了。从两栖类水中产卵、水中受精发展到爬行动物的体内受精和产生羊膜卵,是脊椎动物演化史上的一次重大飞跃。
陆生爬行动物中以恐龙(Dinosaur)为主要代表。恐龙最早出现于中三叠世,分蜥臀类和鸟臀类两大支系,是中生代占绝对优势的陆地脊椎动物。由于爬行动物大量繁殖,除绝大部分在陆地上生活外,有的重返水域成为水生爬行动物,如开始的鱼龙类、和的蛇颈龙类。有的向空中发展成为飞翔的爬行动物,叫翼龙类,如德国侏罗系中发现的喙嘴龙 (Rhamphorhyn-chus),靠前肢的两张翼膜飞翔。由喙嘴龙分化出另一类飞翔爬行动物叫翼指龙(Ptercdactylus),主要生活在晚侏罗世到白垩纪。
爬行动物是中生代地球上占绝对优势的脊椎动物,故称中生代为“爬行动物时代”或“龙的时代”。到白垩纪末期,全球出现了显著的地质事件,使地表自然环境发生巨大变化。由于恐龙不能适应当时迅速变化的环境,随同整个爬行动物的大衰退,无论陆生的、水生的或飞翔的恐龙,到白垩纪末都相继绝灭了。爬行动物中残留并延续至今天的,仅有喙头蜥类、鳄类、龟鳖类和有鳞类(蛇和蜥蜴)。
对恐龙的绝灭尚有不同的解释。不少人认为恐龙的集群绝灭与地外成因的灾变事件有关,如超新星爆发、小天体撞击地球等。
(11)鸟类的出现和发展
鸟类是从爬行动物分化出来的一个旁支。鸟类的脑和神经系统发达,心脏分隔完全,是恒温的脊椎动物。从变温的爬行动物转化为恒温的鸟类,是脊椎动物演化史上的一次重大飞跃。恒温动物(鸟类和哺乳动物)的体温相对稳定,不受外界气温的影响,增强了对气候环境的适应性,扩大了地理分布范围。
鸟类最早的化石代表是德国晚侏罗世的始祖鸟(Ar-chaeopteryx),它是由爬行动物向鸟类过渡的中间类型,是鸟类的最早代表。此外,1986年在美国得克萨斯州发现一新的鸟化石,命名为 Protoavis,意为“原始的鸟”。其时代为三叠纪,比始祖鸟早,但比始祖鸟更接近现代鸟类。因此有人认为始祖鸟可能是鸟类系统演化中的一个旁支。有关鸟类的起源和早期发展有待深入研究。
(12)被子植物和哺乳动物
早白垩世晚期出现了被子植物,中、晚白垩世很快繁育起来,新生代时极为繁盛,代替了裸子植物,成为植物界中最高级的类群,开创了被子植物时代。关于被子植物的起源迄今尚无定论。
被子植物有比裸子植物更进步的内部构造和完善的生殖器官。被子植物的迅速发展和更广泛的地理分布,为依赖植物为生的动物界提供了丰富的食物资源,促进了昆虫、鸟类和哺乳动物的大发展。人类生活也与被子植物的发展密切相关。
最早的哺乳动物是从三叠纪的似哺乳爬行动物中分化出来的。进入新生代,由于板块的分离或聚合,气候的分化,被子植物的迅速发展和广泛分布,促使哺乳动物迅速分化、辐射,得到了空前发展,取代了爬行动物,在地球上居于优势。从而脊椎动物的演化又进入了一个更高级的阶段──哺乳动物时代。从爬行动物的变温、卵生发展为哺乳动物的恒温、胎生和哺乳,以及高度发达的神经系统和感觉器官,是脊椎动物演化史上的一次重大飞跃。
一般认为中生代的古兽类是白垩纪和新生代有袋类和有胎盘类的共同祖先。白垩纪时,有袋类广泛分布于世界各大陆,第三纪繁盛于南美,而现代仅生活在澳大利亚。有胎盘类是比有袋类更高等的哺乳动物。最早的有胎盘类是白垩纪出现的小型食虫类。新生代后得到空前发展,分化、辐射出许多分支。其中一支为适合于飞行生活的翼手类和蝙蝠,是从古新世一类树栖生活的食虫类演化而来的。另一支是适应于海洋生活的鲸类,保留了从陆生祖先继承来的肺呼吸,是一种进化趋同的现象。啮齿类包括现生的松鼠、河狸、家鼠等,是兽类中演化最成功的一类,无论在种类、数量、分布地区,在兽类中都占优势地位。食肉类又分为古食肉类、新食肉类和鳍脚类。古食肉类大量辐射发生在古新世和始新世。始新世末期新食肉类繁盛起来,如现生的猫、虎、狗等。新食肉类出现不久,海生鳍脚类(海狮、海豹、海象)开始出现。
最原始的哺乳动物主要是食虫的。古老的有蹄动物踝节类也是从原始食虫类演化而来的,是由食虫发展到食草过程中最原始的一个分支,是后来大多数有蹄动物,包括马、貘、犀等奇蹄类和猪、牛、羊等偶蹄类的共同祖先。
象的祖先可能由早期的踝节类演化而来。最早的象是发现于北非晚始新世到早渐新世的始祖象(Moerither-ium),体形大小如猪,第二对门齿还没有形成象类特有的大门牙。古乳齿象(Palaeomastodon)是始祖象的直接后裔,它的身体比始祖象增大了约一倍,上门牙伸长,第四纪开始多数绝灭,少数生活到早更新世。真象类是从乳齿象演化出来的,又分为剑齿象类和真象类。中国象类化石很多,如甘肃早更新世的剑齿象化石被命名为黄河古象,真象化石有广泛分布于华北和东北晚更新世的猛犸象。象类演化趋势是个体增大、鼻长和大象牙的不断增长。今天残存的仅有非洲象和印度象。
奇蹄类中以马的演化研究的最清楚。马的最早代表是始新世早期的始马(Hyracotherium),大小如现代的狐狸,前足有4个脚趾,后足有5个脚趾。渐新世出现了中马(Mesohippus),前、后足只有3个脚趾,都着地。始马和中马都生活在森林里。中新世出现了草原古马(Mery-chippus),前、后足都只有3个脚趾,只中间1个趾着地,两侧的已经退化。从草原古马开始,马类才进化到草原奔驰生活。到上新世,开始出现单趾马,命名为上新马(Pliohippus)。到第四纪出现了现代马 (Equus)。马类的演化趋势是,个体增大,腿和脚伸长,侧趾退化,中趾加强,前臼齿臼齿化,颊齿齿冠增高。
偶蹄类从始新世开始出现,经过渐新世、中新世和上新世大量发展,从更新世到现在,在食草动物中无论在种类上和数量上都占优势地位。偶蹄类分为猪形类、骆驼类和反刍类。猪形类出现于始新世早期,都是些小形偶蹄类,如始新世的双锥齿兽,戈壁猪形兽等。从渐新世到上新世体形变大。更新世出现了与现代野猪相似的猪。骆驼出现于始新世晚期,也是小形的偶蹄类。从始新世的始驼,经过渐新世的鹿驼,到中新世和上新世的原驼,一直发展到现代亚洲的真驼和南美的羊驼。反刍类包括鼷鹿、鹿、长颈鹿、牛、羊、羚羊等。这一类的主要特征是消化系统复杂,能很好地加工和消化粗糙的草类。鼷鹿是最原始的反刍类。在中国发现的鹿化石很多,有中新世的皇冠鹿、上新世的上新鹿、更新世的四不象鹿和大角鹿等。
(13)从猿到人
人类在动物界中的近亲是类人猿(简称猿)。现代的类人猿有长臂猿、猩猩、大猩猩和黑猩猩。类人猿无论在外貌和面部表情上,还是身体内部的结构上都与人相似。类人猿中又以黑猩猩与人最接近。
根据化石资料,从猿到人经过森林古猿(Dryopithe-cus)、腊玛古猿(Ramapithecus)、南方古猿(Australo-pithecus)、人(Homo)4个阶段。森林古猿在渐新世晚期中新世中期繁荣于欧、亚、非洲大陆,是现生各种猿类的祖先。腊玛古猿大约在1500万年前由一种森林古猿演化而来, 生存在距今 1500~800万年前。这种化石最早(1932)发现于印度西瓦立克山,以后在非洲、欧洲和中国云南均有发现。一般认为腊玛古猿是从猿到人过渡阶段的早期代表,是最早的人科成员。但近年来新发现的化石却增加了腊玛古猿是人科的怀疑,有人认为是一种进步的猿类。南方古猿化石最早(1924)发现于南非,南方古猿大约生存于距今300~100万年前,它的原始类型可能是从猿到人的过渡阶段晚期的代表。由南方古猿再进一步发展成现代人。从猿到人的演化过程中,劳动起着重要的作用。由于劳动使身体的姿势由半直立变为直立。劳动和语言又促进了脑的发展,而脑的发展又加速了从猿到人的转变。
(14)人类的发展
人类发展的过程一般分为 4个阶段:早期猿人阶段、晚期猿人阶段、早期智人阶段和晚期智人阶段。
早期猿人阶段。出现于更新世早期,以坦桑尼亚距今 175万年的“能人”(Homo habilis)为代表。这一阶段的人类已具人的基本特点,但还有许多原始性。能直立行走,还能制造简单的砾石工具。外貌像猿,但脑量达700毫升,比现代猿大。
晚期猿人(直立人)阶段。出现于更新世中期,以北京猿人(Homo erectus pekinensis)和爪哇猿人(Homo ercetus Java)为代表。与北京猿人大致同时的还有蓝田猿人(Homo erectus lantianensis)和海德堡人(Homo erectus heidelber ensis)等。这一时期的猿人,身体形态已有明显的进步性,身体像人,脑颅像猿,但脑量较大,在715~1225毫升之间,直立行走的姿势已与现代人接近。在文化上已能制造较进步的石器,并开始用天然火。比早期猿人分布范围更广泛。
早期智人(古人)阶段。古人生存于距今10~20万年至5万年前,广泛分布于亚、非、欧洲的许多地区,以德国的尼安德特人(Homo sapiens neanderthalensis)为代表。中国发现的古人化石有广东的马坝人、湖北的长阳人、山西的丁村人。古人的脑量已达现代人的水平,制造石器,靠渔猎生活,能人工取火。丁村人在石器打制技术上比北京猿人有了显著提高,加工更加精细。
晚期智人(新人)阶段。出现于近5万年内,以法国的克罗马侬人(Homo sapiens sapiens)为代表。在中国有北京周口店的山顶洞人,内蒙的河套人,广西的柳江人,四川的资阳人。新人在形态上已非常像现代人,在文化上已有雕刻与绘画的艺术,并出现了装饰品。新人分布范围比古人更广泛。新人化石不仅发现于亚、欧、非洲的广大地区,在大洋洲和美洲也有发现。在新人阶段,现代人种包括黄种、白种、黑种和棕种,开始分化和形成,广泛分布于世界各地。柳江人是现代黄种人的祖先,克罗马
㈦ 生物演变的过程。具体点~~~~~~~~~~~~~~~~~~~~~~~~~~................................
生命的起源
一般认为生命是由化学物质从无机到有机演化而来的。地球原始大气富含甲烷、氨、二氧化碳、水汽等,这些气体在外界高能(紫外线、闪电、高温)的作用下,首先合成氨基酸、脂肪酸等小分子有机化合物。这些小分子有机化合物,在适当的条件下,可以进一步结合成更复杂的蛋白质、核酸等大分子有机物质,经过进一步演化,终于产生了能够不断地进行自我更新的、结构非常复杂的多分子体系,由此产生了原始生命。当非细胞形态的原始生命在地球上出现时,由于大气中仍然缺氧,因此,它们一定是厌氧和异养类型。地球约形成于距今46亿年,从澳大利亚发现的距今35亿年的瓦拉翁纳群中的丝状细菌化石表明,生命的起源亦即化学演化过程,应发生在地球形成后约11亿年。生命的产生是地球演化史上的一次最大的飞跃,使得地球历史从化学演化阶段推向生物演化阶段。
编辑本段
原核生物的出现
最初的生命应是非细胞形态的生命,为了保证有机体与外界正常的物质交换,原始生命在演化过程中,形成了细胞膜,出现了细胞结构的原核生物。细胞是生命的结构单元、功能单元和生殖单元,细胞的产生是生命史上的一次重大的飞跃。当前,地球上发现最早具细胞结构的可靠化石是瓦拉翁纳群中的丝状细菌化石。
编辑本段
藻菌生态系统的形成
地球上最早出现的异养型原核生物细菌,经过不断地分化和发展,终于又出现了能够进行光合作用、从无机物合成有机养料的自养型原核生物蓝藻。蓝藻和细菌作为早期生物界的合成者和分解者,组成物质循环的两个基本环节,形成了一个完整的生态系统。从异养到自养是早期生物演化的另一次重大的飞跃。
蓝藻是最早出现的放氧生物,使得地球上原始大气中氧气浓度不断增加,形成含氧大气层。在高空出现的臭氧层,吸收了太阳的紫外辐射,改变了整个生态环境,为喜氧生物提供了有利的生活环境。于是生物便由厌氧转入喜氧,提高了能量代谢的效能。在加拿大甘弗林组中,发现了完好的距今约20亿年的细菌和蓝藻化石。
编辑本段
真核生物的出现
从原核到真核是生物演化从简单到复杂的转折点,最早具细胞的生物是单细胞原核生物。原核细胞没有核膜,没有细胞器,结构简单。真核细胞具有核膜,整个细胞分化为细胞核和细胞质两部分。细胞核内具有染色体,成为遗传中心,细胞质内进行蛋白质合成,成为代谢中心。由于细胞结构的复化,增强了变异性,使得真核生物能够向高级体制发展。现已发现距今约13亿年的美国加利福尼亚的贝克泉组的白云岩中的原核蓝藻和真核绿藻。绿藻还发现于距今约10亿年的澳大利亚的苦泉组。绿藻是最早具有真核的生物。
编辑本段
动物的出现
随着真核生物的出现,动、植物开始分化和发展。动物的出现,形成了一个新的三极生态系统。绿色植物(真核植物和原核蓝藻)通过叶绿素光合作用制造食物,是自然界的生产者;细菌和真菌是自然界的分解者;动物是自然界的消费者。地史上最早的动物化石是距今6~7亿年澳大利亚的伊迪卡拉动物群,其中以腔肠动物的似水母类、海鳃类、环节动物和少量节肢动物为主,还有一部分分类位置未定的疑难化石,很可能代表地史上曾短暂出现而又迅速绝灭的类群。从动物的分化水平看,伊迪卡拉动物群已是较后期的类型,不是动物的原始代表。这标志着后生动物在元古宙早已出现,并经历了一段相当长的分化演变过程。
编辑本段
海洋藻类和无脊椎动物时代
早古生代在生物演化史上称为“海洋藻类时代”和“海洋无脊椎动物时代”。起始于距今6亿年,延续了约1.7亿年。
植物仍以海生藻类为主,但很难保存为完好的化石。由于植物进化速度远较动物缓慢,早古生代植物界一直停留在藻类阶段。藻类的大量繁育不仅为海洋无脊椎动物提供了丰富的食物资源,而且通过叶绿素光合作用,放出氧气,为海洋无脊椎动物的发展,准备了有利的生活环境。
继元古宙末期伊迪卡拉后生裸露动物群之后,于寒武纪早期,出现了地史上最早具钙质硬壳的小壳动物群,包括软舌螺、单板类、腹足类、腕足类等。这与当时海水富含钙质有关。由于发生了矿化事件,使得寒武纪保存的化石突然增多。这一时期称为“非三叶虫时代”。进入三叶虫时代后,在中国云南发现了距今5.7亿年的澄江动物群,主要由水母、三叶虫、金臂虫、非三叶虫节肢动物、蠕形动物、海绵、无铰腕足类、软舌螺和藻类等组成,是目前世界上保存最早的软体的多门类动物群,这一动物群的发现还表明后生动物在寒武纪开始前已经历了一段分化、辐射的历史过程。随后,腔肠动物、古杯类、软体动物(双壳、腹足、头足)、棘皮动物、牙形刺、笔石等相继出现。其中以三叶虫演化迅速、生态分异明显,分布遍及全球整个海域,在动物界中占绝对优势,因而称寒武纪为“三叶虫时代”。古杯类是地史上最早的造礁动物,生活于早寒武世,中寒武世早期绝灭,是生物史上第一个完全绝灭的造礁动物门类。
奥陶纪是自然环境有利于海洋无脊椎动物继续发展的时代,层孔虫、苔藓虫等先后出现,笔石、腕足类、鹦鹉螺等显著分异。树形笔石继续发展,一部分固着在海底生活,而大部分远运洋漂浮生活,遍及全球海域。到早奥陶世中期,正笔石类兴起、演化迅速,是奥陶纪的重要分带化石。腕足类出现了分异的第一个高峰期,在数量上占重要地位。鹦鹉螺开始出现于晚寒武世,到奥陶纪分异明显,种类繁多,个体较大,是营游泳生活的凶猛食肉动物。珊瑚最早出现于寒武纪,至中、晚奥陶世大量繁育,同层孔虫、苔藓虫等一起,是温暖浅海的重要造礁动物。海洋无脊椎动物新类群的出现和多样化,加剧了浅海陆棚区的生存竞争。
志留纪延续时间较短,生物界来源于奥陶纪,但有新的发展。其中最重要的生物事件是,三叶虫显著衰退,笔石向简化方向演变,单笔石兴起并大量发展。珊瑚以床板珊瑚和日射珊瑚为主,出现了特有的链珊瑚。腕足类出现了内部构造更为复杂的五房贝和展翼状外壳的石燕贝。鹦鹉螺显著减少但仍有代表。节肢动物中形体最大的板足鲎类最早出现于奥陶纪,到志留纪大量繁育,志留纪末,由于受加里东运动的影响,海水逐渐退去。部分生物为了适应新的生活环境,由海洋向陆地生活转变。
向陆地生活转变和发展──植物和昆虫 由于志留纪末期大规模海退,陆地面积逐渐扩大,从滨海浅滩绿藻植物演化而来的陆生裸蕨植物最早出现于晚志留世,到早泥盆世开始大量生活在滨海沼泽低地,中泥盆世后期出现根、茎和叶分化的原始石松类和有节类,到晚泥盆世在自然选择的作用下,裸蕨迅速绝灭了。一般称志留纪末到中泥盆世为“裸蕨植物时代”。到石炭、二叠纪陆生植物进一步发展,出现了石松、节蕨、真蕨和原始裸子植物的种子蕨和科达类,这一时期被称为“蕨类植物时代”。从晚石炭世到二叠纪各类植物极度繁茂,由于适应不同的气候条件,逐渐形成明显的植物地理分区。
陆生植物发展之后,与植物存在着密切关系的昆虫大量繁育,它们相互依存,相互制约,平行发展。最早的昆虫类是最原始的无翅类型,最早的无翅类化石出现于泥盆纪。石炭纪出现了现知最早的有翅昆虫,当时最繁盛的昆虫是现已绝灭的古网翅类。二叠纪昆虫区系发生显著的变化,直翅类明显缩小,许多现代类型开始出现。
编辑本段
鱼类的出现和发展
鱼类包括有颌类和无颌类。无颌类包括头甲鱼形类和鳍甲鱼形类。头甲鱼形类包括现生的七鳃鳗和盲鳗以及古生代有甲胄的种类;鳍甲鱼形类包括已绝灭的异甲鱼和花麟鱼。无颌类最早的类群是异甲类。发现于北美落基山区中奥陶统的异甲鱼,是脊椎动物最早的化石代表。晚志留世出现了从无颌类分化出来的最早具颌的棘鱼类和盾皮鱼类。有了上下颌,就不仅是被动摄食微小有机物,而可主动追捕大的食物了。硬骨鱼类包括总鳍鱼类、肺鱼类和辐鳍鱼类,最早出现于晚志留世晚期,与棘鱼类有共同的祖先。盾皮鱼类最早出现于晚志留世,一直生存到早石炭世,以泥盆纪最繁盛。软骨鱼类出现于早泥盆世晚期,可能与盾皮鱼类有共同的祖先。泥盆纪时鱼类极为繁盛,故被称为“鱼类时代”。硬骨鱼类在现代鱼类中占绝对优势,被称为“水中的主人”。从侏罗纪起,软骨鱼类出现了,如鲨鱼和鳐?,还有生活在深海里的银鲛。
编辑本段
两栖类的出现
总鳍鱼在晚泥盆世时登陆, 是陆生脊椎动物的最早类型。脊椎动物在登上陆地的过程中首先要解决呼吸和行动问题。总鳍鱼已具有原始肺的构造,肉质偶鳍可以在地上爬行。最早的两栖类代表是发现于格陵兰和北美晚泥盆世的迷齿类鱼石螈(Ichthyostega),具明显的从总鳍鱼类向两栖类过渡的中间类型性质。石炭-二叠纪是两栖类最繁盛的时期,被称为“两栖动物时代”。残存下来的现代两栖类有蝾螈、青蛙等。
编辑本段
裸子植物和爬行动物
裸子植物
裸子植物虽在石炭-二叠纪时已开始出现,但最繁盛的时期是中生代,故中生代被称为“裸子植物时代”。这一时期的植物群以苏铁、本内苏铁和松柏类为主。北半球还有较多的银杏类,南半球则以松柏类占优势。从蕨类植物演化到裸子植物,标志着从孢子繁植转化为种子繁殖。裸子植物用种子繁殖适于陆上生活和传播,扩大了生存空间,形成了地球上的广大森林,为爬行动物的发展,提供了有利的生活环境。
石炭-二叠纪时,从两栖动物迷齿类演化出来的蜥螈形类,坚持陆生方向,很可能是爬行动物的祖先。经过长期演化,产生了能够适应干旱陆地环境的羊膜卵。于是,爬行动物诞生了。从两栖类水中产卵、水中受精发展到爬行动物的体内受精和产生羊膜卵,是脊椎动物演化史上的一次重大飞跃。
陆生爬行动物
陆生爬行动物中以恐龙(Dinosaur)为主要代表。恐龙最早出现于中三叠世,分蜥臀类和鸟臀类两大支系,是中生代占绝对优势的陆地脊椎动物。由于爬行动物大量繁殖,除绝大部分在陆地上生活外,有的重返水域成为水生爬行动物,如三叠纪开始的鱼龙类、侏罗纪和白垩纪的蛇颈龙类。有的向空中发展成为飞翔的爬行动物,叫翼龙类,如德国侏罗系中发现的喙嘴龙 (Rhamphorhyn-chus),靠前肢的两张翼膜飞翔。由喙嘴龙分化出另一类飞翔爬行动物叫翼指龙(Ptercdactylus),主要生活在晚侏罗世到白垩纪。
爬行动物是中生代地球上占绝对优势的脊椎动物,故称中生代为“爬行动物时代”或“龙的时代”。到白垩纪末期,全球出现了显著的地质事件,使地表自然环境发生巨大变化。由于恐龙不能适应当时迅速变化的环境,随同整个爬行动物的大衰退,无论陆生的、水生的或飞翔的恐龙,到白垩纪末都相继绝灭了。爬行动物中残留并延续至今天的,仅有喙头蜥类、鳄类、龟鳖类和有鳞类(蛇和蜥蜴)。
对恐龙的绝灭尚有不同的解释。不少人认为恐龙的集群绝灭与地外成因的灾变事件有关,如超新星爆发、小天体撞击地球等。
编辑本段
鸟类的出现和发展
鸟类是从爬行动物分化出来的一个旁支。鸟类的脑和神经系统发达,心脏分隔完全,是恒温的脊椎动物。从变温的爬行动物转化为恒温的鸟类,是脊椎动物演化史上的一次重大飞跃。恒温动物(鸟类和哺乳动物)的体温相对稳定,不受外界气温的影响,增强了对气候环境的适应性,扩大了地理分布范围。
鸟类最早的化石代表是德国晚侏罗世的始祖鸟(Ar-chaeopteryx),它是由爬行动物向鸟类过渡的中间类型,是鸟类的最早代表。此外,1986年在美国得克萨斯州发现一新的鸟化石,命名为 Protoavis,意为“原始的鸟”。其时代为三叠纪,比始祖鸟早,但比始祖鸟更接近现代鸟类。因此有人认为始祖鸟可能是鸟类系统演化中的一个旁支。有关鸟类的起源和早期发展有待深入研究。
编辑本段
被子植物和哺乳动物
概述
早白垩世晚期出现了被子植物,中、晚白垩世很快繁育起来,新生代时极为繁盛,代替了裸子植物,成为植物界中最高级的类群,开创了被子植物时代。关于被子植物的起源迄今尚无定论。
被子植物
被子植物有比裸子植物更进步的内部构造和完善的生殖器官。被子植物的迅速发展和更广泛的地理分布,为依赖植物为生的动物界提供了丰富的食物资源,促进了昆虫、鸟类和哺乳动物的大发展。人类生活也与被子植物的发展密切相关。
哺乳动物
最早的哺乳动物是从三叠纪的似哺乳爬行动物中分化出来的。进入新生代,由于板块的分离或聚合,气候的分化,被子植物的迅速发展和广泛分布,促使哺乳动物迅速分化、辐射,得到了空前发展,取代了爬行动物,在地球上居于优势。从而脊椎动物的演化又进入了一个更高级的阶段──哺乳动物时代。从爬行动物的变温、卵生发展为哺乳动物的恒温、胎生和哺乳,以及高度发达的神经系统和感觉器官,是脊椎动物演化史上的一次重大飞跃。
一般认为中生代的古兽类是白垩纪和新生代有袋类和有胎盘类的共同祖先。白垩纪时,有袋类广泛分布于世界各大陆,第三纪繁盛于南美,而现代仅生活在澳大利亚。有胎盘类是比有袋类更高等的哺乳动物。最早的有胎盘类是白垩纪出现的小型食虫类。新生代后得到空前发展,分化、辐射出许多分支。其中一支为适合于飞行生活的翼手类和蝙蝠,是从古新世一类树栖生活的食虫类演化而来的。另一支是适应于海洋生活的鲸类,保留了从陆生祖先继承来的肺呼吸,是一种进化趋同的现象。啮齿类包括现生的松鼠、河狸、家鼠等,是兽类中演化最成功的一类,无论在种类、数量、分布地区,在兽类中都占优势地位。食肉类又分为古食肉类、新食肉类和鳍脚类。古食肉类大量辐射发生在古新世和始新世。始新世末期新食肉类繁盛起来,如现生的猫、虎、狗等。新食肉类出现不久,海生鳍脚类(海狮、海豹、海象)开始出现。
最原始的哺乳动物主要是食虫的。古老的有蹄动物踝节类也是从原始食虫类演化而来的,是由食虫发展到食草过程中最原始的一个分支,是后来大多数有蹄动物,包括马、貘、犀等奇蹄类和猪、牛、羊等偶蹄类的共同祖先。
象的祖先可能由早期的踝节类演化而来。最早的象是发现于北非晚始新世到早渐新世的始祖象(Moerither-ium),体形大小如猪,第二对门齿还没有形成象类特有的大门牙。古乳齿象(Palaeomastodon)是始祖象的直接后裔,它的身体比始祖象增大了约一倍,上门牙伸长,第四纪开始多数绝灭,少数生活到早更新世。真象类是从乳齿象演化出来的,又分为剑齿象类和真象类。中国象类化石很多,如甘肃早更新世的剑齿象化石被命名为黄河古象,真象化石有广泛分布于华北和东北晚更新世的猛犸象。象类演化趋势是个体增大、鼻长和大象牙的不断增长。今天残存的仅有非洲象和印度象。
奇蹄类中以马的演化研究的最清楚。马的最早代表是始新世早期的始马(Hyracotherium),大小如现代的狐狸,前足有4个脚趾,后足有5个脚趾。渐新世出现了中马(Mesohippus),前、后足只有3个脚趾,都着地。始马和中马都生活在森林里。中新世出现了草原古马(Mery-chippus),前、后足都只有3个脚趾,只中间1个趾着地,两侧的已经退化。从草原古马开始,马类才进化到草原奔驰生活。到上新世,开始出现单趾马,命名为上新马(Pliohippus)。到第四纪出现了现代马 (Equus)。马类的演化趋势是,个体增大,腿和脚伸长,侧趾退化,中趾加强,前臼齿臼齿化,颊齿齿冠增高。
偶蹄类从始新世开始出现,经过渐新世、中新世和上新世大量发展,从更新世到现在,在食草动物中无论在种类上和数量上都占优势地位。偶蹄类分为猪形类、骆驼类和反刍类。猪形类出现于始新世早期,都是些小形偶蹄类,如始新世的双锥齿兽,戈壁猪形兽等。从渐新世到上新世体形变大。更新世出现了与现代野猪相似的猪。骆驼出现于始新世晚期,也是小形的偶蹄类。从始新世的始驼,经过渐新世的鹿驼,到中新世和上新世的原驼,一直发展到现代亚洲的真驼和南美的羊驼。反刍类包括鼷鹿、鹿、长颈鹿、牛、羊、羚羊等。这一类的主要特征是消化系统复杂,能很好地加工和消化粗糙的草类。鼷鹿是最原始的反刍类。在中国发现的鹿化石很多,有中新世的皇冠鹿,上新世的上新鹿,更新世的四不象鹿和大角鹿等。
编辑本段
从猿到人
人类在动物界中的近亲是类人猿(简称猿)。现代的类人猿有长臂猿、猩猩、大猩猩和黑猩猩。类人猿无论在外貌和面部表情上,还是身体内部的结构上都与人相似。类人猿中又以黑猩猩与人最接近。
根据化石资料,从猿到人经过森林古猿(Dryopithe-cus)、腊玛古猿(Ramapithecus)、南方古猿(Australo-pithecus)、人(Homo)4个阶段。森林古猿在渐新世晚期中新世中期繁荣于欧、亚、非洲大陆,是现生各种猿类的祖先。腊玛古猿大约在1500万年前由一种森林古猿演化而来, 生存在距今 1500~800万年前。这种化石最早(1932)发现于印度西瓦立克山,以后在非洲、欧洲和中国云南均有发现。一般认为腊玛古猿是从猿到人过渡阶段的早期代表,是最早的人科成员。但近年来新发现的化石却增加了腊玛古猿是人科的怀疑,有人认为是一种进步的猿类。南方古猿化石最早(1924)发现于南非,南方古猿大约生存于距今300~100万年前,它的原始类型可能是从猿到人的过渡阶段晚期的代表。由南方古猿再进一步发展成现代人。从猿到人的演化过程中,劳动起着重要的作用。由于劳动使身体的姿势由半直立变为直立。劳动和语言又促进了脑的发展,而脑的发展又加速了从猿到人的转变。
编辑本段
人类发展的过程
人类发展的过程一般分为 4个阶段:早期猿人阶段、晚期猿人阶段、早期智人阶段和晚期智人阶段。
早期猿人阶段
出现于更新世早期,以坦桑尼亚距今 175万年的“能人”(Homo habilis)为代表。这一阶段的人类已具人的基本特点,但还有许多原始性。能直立行走,还能制造简单的砾石工具。外貌像猿,但脑量达700毫升,比现代猿大。
晚期猿人(直立人)阶段
出现于更新世中期,以北京猿人(Homo erectus pekinensis)和爪哇猿人(Homo ercetusJava)为代表。与北京猿人大致同时的还有蓝田猿人(Homo erectus lantianensis)和海德堡人(Homo erectus heidelber gensis)等。这一时期的猿人,身体形态已有明显的进步性,身体像人,脑颅像猿,但脑量较大,在715~1225毫升之间,直立行走的姿势已与现代人接近。在文化上已能制造较进步的石器,并开始用天然火。比早期猿人分布范围更广泛。
早期智人(古人)阶段
古人生存于距今10~20万年至5万年前,广泛分布于亚、非、欧洲的许多地区,以德国的尼安德特人(Homo sapiensneanderthalensis)为代表。中国发现的古人化石有广东的马坝人、湖北的长阳人、山西的丁村人。古人的脑量已达现代人的水平,制造石器,靠渔猎生活,能人工取火。丁村人在石器打制技术上比北京猿人有了显著提高,加工更加精细。
晚期智人(新人)阶段
出现于近5万年内,以法国的克罗马侬人(Homo sapiens sapiens)为代表。在中国有北京周口店的山顶洞人,内蒙的河套人,广西的柳江人,四川的资阳人。新人在形态上已非常像现代人,在文化上已有雕刻与绘画的艺术,并出现了装饰品。新人分布范围比古人更广泛。新人化石不仅发现于亚、欧、非洲的广大地区,在大洋洲和美洲也有发现。在新人阶段,现代人种包括黄种、白种、黑种和棕种,开始分化和形成,广泛分布于世界各地。柳江人是现代黄种人的祖先,克罗马侬人是现代欧洲白种人的祖先。
㈧ 恐龙之前的生物
恐龙之前的生命:
寒武纪:作为生命【大爆炸】的年代。代便生物:三叶虫、古杯动物、腹皮动物
腕足动物、棘皮动物等····
石炭纪:石炭纪约处于地质年代两亿八千六百万至三亿六千万年前,它可以区分为两个时期:始石炭纪(又叫密西西比纪,三亿两千至三亿六千万前)、和后石炭纪(又叫宾夕法尼亚纪,两亿八千六百至三亿两千万年前)。
代表生物:昆虫
奥陶纪:代表生物:鱼类、笔石、牙形石、鹦鹉螺
泥盆纪:脊椎动物飞速发展。菊石取代三叶虫。
志留纪:本纪始于距今4.38亿年,延续了2500万年。由于志留系在波罗的海哥德兰岛上发育较好,因此曾一度被称为哥德兰系。志留纪可分早、中、晚三个世。
生物特点:鱼类向陆地开始发展。
奥陶纪:在奥陶纪晚期,约4.8亿年前,首次出现了可靠的陆生脊椎动物——淡水无颚鱼;淡水植物据推测可能在奥陶纪也已经出现。
石炭纪:石炭纪约处于地质年代两亿八千六百万至三亿六千万年前,它可以区分为两个时期:始石炭纪(又叫密西西比纪,三亿两千至三亿六千万前)、和后石炭纪(又叫宾夕法尼亚纪,两亿八千六百至三亿两千万年前)。
生命是生物的组成部分,是生物具有的生存发展性质和能力,是生物的生长、繁殖、代谢、应激、进化、运动、行为表现出来的生存发展意识,是人类通过认识实践活动从生物中发现、界定、彰显、抽取出来的抽象事物。
从低等简易到高等复杂,生命历时数亿万年的演化,正如道家所谓:道生一,一生二,二生三,三生万物。而演化出了各种不同种类的生命。
大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系。作为太阳系一员的地球也在46亿年前形成了。接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态。高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构。这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致。
生命起源于大约35亿年以前。在35亿年的化石岩层当中我们可以找到蓝藻的化石。
