导航:首页 > 股票外汇 > 非贵金属燃料电池

非贵金属燃料电池

发布时间:2021-07-06 11:22:59

㈠ 质子交换膜燃料电池系统有哪几个部分构成,各部分的作用是什么

①质子交换膜质子交换膜(PEM)是质子交换膜燃料电池的核心部件,是一种厚度仅为50~180um的薄膜片,其微观结构非常复杂。它为质子传递提供通道,同时作为隔膜将阳极的燃料与阴极的氧化剂隔开,其性能好坏直接影响电池的性能和寿命。它与一般化学电源中使用的隔膜有很大不同,它不只是一种隔离阴阳极反应气体的隔膜材料,还是电解质和电极活性物质(电催化剂)的基底,即兼有隔膜和电解质的作用;另外,PEM还是一种选择透过性膜,在一定的温度和湿度条件下具有可选择的透过性,在质子交换膜的高分子结构中,含有多种离子基团,它只容许氢离子(氢质子)透过,而不容许氢分子及其他离子透过。

亚南膜电极参与了国家863计划《燃料电池应急备用电源中试规模的制造及运行》项目的研究开发,项目于2016年顺利通过国家科技部验收,

(a)PEMFC的基本结构

(b)质子交换膜燃料电池组的外观

图1质子交换膜燃料电池的基本结构

质子交换膜燃料电池对于质子交换膜的要求非常高,质子交换膜必须具有良好的质子电导率、良好的热和化学稳定性、较低的气体渗透率,还要有适度的含水率,对电池工作过程中的氧化、还原和水解具有稳定性,并同时具有足够高的机械强度和结构强度,以及膜表面适合与催化剂结合的性能。

质子交换膜的物理、化学性质对燃料电池的性能具有极大的影响,对性能造成影响的质子交换膜的物理性质主要有:膜的厚度和单位面积质量、膜的抗拉强度、膜的含水率和膜的溶胀度。质子交换膜的电化学性质主要表现在膜的导电性能(电阻率、面电阻,电导率)和选择通过性能(透过性参数P)上。

a.膜的厚度和单位面积质量。膜的厚度和单位面积质量越低,膜的电阻越小,电池的工作电压和能量密度越大;但是如果厚度过低,会影响膜的抗控强度,甚至引起氢气的泄漏而导致电池的失效。

b.膜的抗拉强度。膜的抗拉强度与膜的厚度成正比,也与环境有关,通常在保证膜的抗拉强度的前提下,应尽量减小膜的厚度。

c.膜的含水率。每克干膜的含水量称为膜的含水率,可用百分数表示。含水率对膜电解质的质子传递能力影响很大,还会影响到氧在膜中的溶解扩散。含水率越高,质子扩散因子和渗透率也越大,膜电阻随之下降,但同时膜的强度也有所下降。

d.膜的溶胀度。膜的溶胀度是指离子膜在给定的溶液中浸泡后,离子膜的面积或体积变化的百分率,即浸液后的体积(面积)和干膜的体积(面积)的差值与干膜的体积(面积)的百分比。膜的溶胀度表示反应中膜的变形程度。溶胀度高,在水合和脱水时会由于膜的溶胀而造成电极的变形和质子交换膜局部应力的增大,从而造成电池性能的下降。

质子交换膜燃料电池曾采用酚醛树脂磺酸型膜、聚苯乙烯磺酸型膜、聚三氟苯乙烯磺酸型膜和全氟磺酸型膜。研究表明,全氟磺酸型膜最适合作为质子交换膜燃料电池的固体电解质。虽然全氟磺酸膜具有良好的性能,但由于膜的结构、工艺和生产批量等问题的存在,到目前为止,质子交换膜的成本还非常高,因此需要寻找高性能低成本的替代膜。一个选择是使用全氟磺酸材料与聚四氟乙烯(PTFE)的复合膜,其中PTFE是起强化作用的微孔介质,而全氟磺酸材料则在微孔中形成质子传递通道。这种复合膜能够改善膜的机械强度和稳定性,而且膜可以做得很薄,减少了全氟磺酸材料的用量,降低了膜的成本,同时较薄的膜还改善了膜中水的分布,提高了膜的质子传导性能。另一个选择是寻找新的低氟或非氟膜材料。此外,还可以采用无机酸与树脂的共混膜,不仅可以提高膜的电导率,还可以提高膜的工作温度。

②电催化剂催化剂是质子交换膜燃料电池中的关键性技术焦点所在。为了加快电化学反应速度,气体扩散电极上都含有一定量的催化剂。由于燃料电池的低运行温度,以及电解质酸性的本质,故应用的催化剂层需要贵金属。PEMFC电催化剂按作用部位可分为阴极催化剂和阳极催化剂两类。质子交换膜燃料电池的阳极反应为氢的氧化反应,阴极为氧的还原反应。因氧的催化还原作用比氢的催化氧化作用更为困难,所以阴极是最关键的电极。

对催化剂的要求是足够的催化活性和稳定性,阳极催化剂还应具有抗CO中毒的能力,对于使用烃类燃料重整的质子交换膜燃料电池系统,阳极催化剂系统尤其应注意这个问题。PEMFC电催化剂按照使用金属可分为铂系和非铂系电催化剂两类。由于质子交换膜燃料电池的工作温度低于100℃,目前只有贵金属催化剂对氢气氧化和氧气还原反应表现出了足够的催化活性.现在所用的最有效催化剂是铂或铂合金催化剂,它对氢气氧化和氧气还原都具有非常好的催化能力,且可以长期稳定工作。由于这种电池是在低温条件下工作的,因此,提高催化剂的活性,防止电极催化剂中毒很重要。

以铂或铂合金作为催化剂的主要问题是成本太高,由于Pt的价格高、资源匮乏,使得质子交换膜燃料电池的成本居高不下,限制了大规模的应用,需要进一步降低铂的载量。一种方法是寻找新的价格较低的非铂,非贵金属催化剂;另一种方法是改进电极结构,有效利用铂催化剂,提高Pt的利用率,减少单位面积的使用量。

以铂或铂合金作为催化剂的另一个主要问题是其毒化问题。铂催化剂因极富活性而提供了优异的性能。该催化剂对一氧化碳和硫的生成物与氧相比有较高的亲和力,这种毒化效应强烈地制约了催化剂的高度活性,并阻碍了扩展到其中的氢或氧.使得电极反应不能发生,燃料电池性能递减。若氢由重整装置提供,则气流中将含有一些一氧化碳,或吸入的空气因来自被污染城市而含有一氧化碳,这都会造成毒化问题的产生。由一氧化碳引起的毒化是可逆的,但它增加了成本,且各个燃料电池需要单独处理。

③电极质子交换膜燃料电池的电极是一种典型的多孔气体扩散电极,一般由气体扩散层和催化层构成。扩散层是导电材料制成的多孔合成物,起着支撑催化层、收集电流的作用,并为电化学反应提供电子通道、气体通道和排水通道。催化层是进行电化学反应的区域,是电极的核心部分,其内部结构粗糙多孔,有足够的表面积以促进氢气和氧气的电化学反应。电极制作的好坏对电池的性能有重要影响。

扩散层一般以多孔炭纸或炭布为基底,并经聚四氟乙烯(PTFE)和炭黑处理后构成的,厚度约为0.2~0.3mm。在扩散层中,被PTFE覆盖的大孔是憎水孔,未被PTFE覆盖的小孔是亲水孔。反应气体通过憎水孔传递,而产物水则通过亲水孔排出。制备扩散层的关键是如何实现憎水孔和亲水孔的合理分布。一个好的气体扩散电极应同时具备适度的亲水性和憎水性,以保证催化剂发生作用的最佳湿化环境,同时让反应生成的水及时排除,以免电极被淹。

催化层可以分为常规憎水催化层、薄层亲水催化层和超薄催化层。早期的催化层是常规的憎水催化层,厚度超过50um,主要是将铂黑或碳载铂催化剂和PTFE微粒混合后,经丝网印刷、涂布和喷涂等方法涂覆到扩散层上并经热处理制得.催化层中的PTFE提供了气体扩散通道,而催化剂则为电子和水的传递提供了通道。但是这种催化层质子传导能力较差,性能不高。后来,为了改进这种催化层的质子传导能力并增加催化剂、反应气体和质子交换膜三相界面的面积,又研制了薄层亲水催化层和超薄催化层。

㈡ 燃料电池如何启动

㈢ 燃料电池相对于锂离子电池有哪些优势和不足

燃料电池涉及化学热力学、电化学、电催化、[1] 材料科学、电力系统及自动控制等学科的有关理论,具有发电效率高、环境污染少等优点。
总的来说,燃料电池具有以下特点:能量转化效率高;它直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制。[2] 燃料电池系统的燃料—电能转换效率在45%~60%,而火力发电和核电的效率大约在30%~40%。安装地点灵活;燃料电池电站占地面积小,建设周期短,电站功率可根据需要由电池堆组装,十分方便。燃料电池无论作为集中电站还是分布式电站,或是作为小区、工厂、大型建筑的独立电站都非常合适。负荷响应快,运行质量高;燃料电池在数秒钟内就可以从最低功率变换到额定功率。
由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。同时还有以下一些特点:

不管是满负荷还是部分负荷均能保持高发电效率;
不管装置规模大小均能保持高发电效率;
具有很强的过负载能力;
通过与燃料供给装置组合的可以适用的燃料广泛;
发电出力由电池堆的出力和组数决定,机组的容量的自由度大;
电池本体的负荷响应性好,用于电网调峰优于其他发电方式;
用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容性优。
如此由燃料电池构成的发电系统对电力工业具有极大的吸引力。
燃料电池的优势,科技手段中,尚没有一项能源生成技术能如燃料电池一样将诸多优点集合于一身。[3]
能源安全性。自1970年代的石油危机后,各大工业国对石油的依赖仍有增无减,而且主要靠石油输出国的供应。美国载客车辆每日可消耗约600万桶油,占油料进口量之85%。若有20%的车辆采用燃料电池来驱动,每日便可省下120万桶油。
国防安全性。燃料电池发电设备具有散布性的特质,它可让地区摆脱中央发电站式的电力输配架构。长距离、高电压的输电网络易成为军事行动的攻击目标。燃料电池设备可采集中也可采分散性配置,进而降低了敌人欲瘫痪国家供电系统的风险。
高可靠度供电。燃料电池可架构于输配电网络之上作为备援电力,也可独立于电力网之外。在特殊的场合下,模块化的设置(串联安装几个完全相同的电池组系统以达到所需的电力)可提供极高的稳定性。
燃料多样性。现代种类繁多的电池中,虽然仍以氢气为主要燃料,但配备「燃料转化器(或译重组器,fuel reformer)」的电池系统可以从碳氢化合物或醇类燃料中萃取出氢元素来利用。此外如垃圾掩埋场、废水处理场中厌氧微生物分解产生的沼气也是燃料的一大来源。利用自然界的太阳能及风力等可再生能源提供的电力,可用来将水电解产生氢气,再供给至燃料电池,如此亦可将「水」看成是未经转化的燃料,实现完全零排放的能源系统。只要不停地供给燃料给电池,它就可不断地产生电力。
高效能。由于燃料电池的原理系经由化学能直接转换为电能,而非产生大量废气与废热的燃烧作用,现今利用碳氢燃料的发电系统电能的转换效率可达40~50%;直接使用氢气的系统效率更可超过50%;发电设施若与燃气涡轮机并用,则整体效率可超过60%;若再将电池排放的废热加以回收利用,则燃料能量的利用率可超过85%。用于车辆的燃料电池其能量转换率约为传统内燃机的3倍以上,内燃引擎的热效率约在10~20%之谱。
环境亲和性。科学家们已认定空气污染是造成心血管疾病、气喘及癌症的元凶之一。最近的健康研究显示,市区污染性的空气对健康的威胁如同吸入二手烟。燃料电池运用能源的方式大幅优于燃油动力机排放大量危害性废气的方案,其排放物大部份是水份。某些燃料电池虽亦排放二氧化碳,但其含量远低于汽油之排放量(约其1/6)。
燃料电池发电设备产生1000仟瓦-小时的电能,排放之污染性气体少于1盎斯;而传统燃油发电机则会产生25磅重的污染物。因此,燃料电池不仅可改善空气污染的情况,甚可能许给人类未来一片洁净的天空。
可弹性设置/用途广。燃料电池的迷人之处在于其多样风貌。除了前述的集中分散两相宜的特点外,它还具有缩放性。利用黄光微影技术可制作微型化的燃料电池;利用模块式堆栈配置可将供电量放大至所欲的输出功率。单一发电元所产生的电压约为0.7伏特,刚好能点亮一只灯。将发电元予以串接,便构成燃料电池组,其电压则增加为0.7伏特乘以串联的发电元个数。
燃料电池的劣势主要是价格和技术上存在一些瓶颈,摘列如下:
燃料电池造价偏高:车用PEMFC之成本中质子交换隔膜(USD300/m2)约占成本之35%;铂触媒约占40%,二者均为贵重材料。
反应/启动性能:燃料电池的启动速度尚不及内燃机引擎。反应性可藉增加电极活性、提高操作温度及反应控制参数来达到,但提高稳定性则必须避免副反应的发生。反应性与稳定性常是鱼与熊掌不可兼得。
碳氢燃料无法直接利用:除甲醇外,其它的碳氢化合物燃料均需经过转化器、一氧化碳氧化器处理产生纯氢气后,方可供现今的燃料电池利用。这些设备亦增加燃料电池系统之投资额。
氢气储存技术:FCV的氢燃料是以压缩氢气为主,车体的载运量因而受限,每次充填量仅约2.5~3.5公斤,尚不足以满足现今汽车单程可跑480~650公里的续航力。以-253℃保持氢的液态氢系统虽已测试成功,但却有重大的缺陷:约有1/3的电能必须用来维持槽体的低温,使氢维持于液态,且从隙缝蒸发而流失的氢气约为总存量的5%。
氢燃料基础建设不足:氢气在工业界虽已使用多年且具经济规模,但全世界充氢站仅约70站,仍值示范推广阶段。此外,加气时间颇长,约需时5分钟,尚跟不上工商时代的步伐。

㈣ 氢燃料发动机与氢燃料电池是一回事吗

fuel
cell直译为燃料电池,就是利用燃料与氧化剂化学反应,直接转化为电能,但它不能储电,只能发电。燃料电池与常规电池的不同点在于,燃料电池工作时需要连续不断地向电池内输入燃料和氧化剂,只要持续供应,燃料电池就会不断提供电能。 燃料电池有两个明显优点,首先能量转化效率高,燃料电池直接将燃料的化学能转化为电能,中间不经过燃烧过程。另一个优势就是有害气体的排放、噪音都相对较低。不过最大的缺点是成本非常高,比如氢燃料电池需要大量的铂做催化剂,铂是贵金属,地壳中储量很稀少,每年的产量也很少。

㈤ 目前有哪些燃料电池

燃料电池的种类按不同的方法可大致分类如下:
1. 按燃料电池的运行机理分。
分为酸性燃料电池和碱性燃料电池。
2. 按电解质的种类不同,有酸性、碱性、熔融盐类或固体电解质。
因此,燃料电池可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)等。在燃料电池中,磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)可以冷起动和快起动,可以用作为移动电源,适应FCEV使用的要求,更加具有竞争力。
3. 按燃料类型分。
有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料,汽油、柴油和天然气等气体燃料,有机燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。
4. 按燃料电池工作温度分。
有低温型,温度低于200℃;中温型,温度为200~750℃;高温型,温度高于750℃。
在常温下工作的燃料电池,例如质子交换膜燃料电池(PEMFC),这类燃料电池需要采用贵金属作为催化剂。燃料的化学能绝大部分都能转化为电能,只产生少量的废热和水,不产生污染大气环境的氮氧化物。不需要废热能量回收装置,体积较小,质量较轻。但催化剂铂(Pt)会与工作介质中的一氧化碳(CO)发生作用后产生"中毒"现象而失效,使燃料电池效率降低或完全损坏。而且铂(Pt)的价格很高,增加了燃料电池的成本。
另一类是在高温(600~1000℃)下工作的燃料电池,例如熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电池(SOFC),这类的燃料电池不需要采用贵金属作为催化剂。但由于工作温度高,需要采用复合废热回收装置来利用废热,体积大,质量重,只适合用于大功率的发电厂中。
最实用的燃料电池是以氢或含富氢的气体燃料,但是在自然界是不能直接获得氢的,燃料电池氢的;来源通常是以石油燃料、甲醇、乙醇、沼气、天然气、石脑油和煤气中,经过重整、裂解等化学处理后来制取含富氢的气体燃料。氧化剂则采用氧气或空气,最常见的是用空气作为氧化剂。检举 回答人的补充 2009-10-22 09:10 燃料电池十分复杂,涉及化学热力学、电化学、电催化、材料科学、电力系统及自动控制等学科的有关理论,具有发电效率高、环境污染少等优点。总的来说,燃料电池具有以下特点:
(1)能量转化效率高他直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制。目前燃料电池系统的燃料—电能转换效率在45%~60%,而火力发电和核电的效率大约在30%~40%。
(2)有害气体SOx、NOx及噪音排放都很低CO2排放因能量转换效率高而大幅度降低,无机械振动。
(3)燃料适用范围广
(4)积木化强规模及安装地点灵活,燃料电池电站占地面积小,建设周期短,电站功率可根据需要由电池堆组装,十分方便。燃料电池无论作为集中电站还是分布式电,或是作为小区、工厂、大型建筑的独立电站都非常合适
(5)负荷响应快,运行质量高燃料电池在数秒钟内就可以从最低功率变换到额定功率,而且电厂离负荷可以很近,从而改善了地区频 燃料电池原理率偏移和电压波动,降低了现有变电设备和电流载波容量,减少了输变线路投资和线路损失。

㈥ 燃料电池主要有哪几种,其各自的特点是什么

可以按燃料类型分类,或者工作温度分类,但一般都是以电解质的类型来分类的,可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)和质子交换膜燃料电池(PENFC)五大类。
AFC的特点是:低温性能好,温度范围宽,并且可以在较宽温度范围内选择催化剂,但是才用的碱性电解质易受CO2的毒化作用因此必须要严格出去CO2,成本就偏高。
PAFC的特点是:无需考虑CO2的净化问题,高温性能好,但是需要采用较大量的贵金属做催化剂,成本较高。
PENFC的特点就是不受卡诺循环限制,能量转换效率高,可低温快速启动,无电解液流失,和腐蚀性,寿命长
比能量和比功率高、设计简单、制造方便等优点,但不足在于对CO比较敏感,需要转换为CO2,预热品位低,难以有效利用,需要采用贵金属催化剂,电解质膜的价格高,生产厂家少。

㈦ 燃料电池的弊端拜托各位大神

燃料电池有节能、转换效率高、不需要石油燃料、达到零污染排放、结构简单、运行平稳等优点, 但也有以下一些缺点: 1) 燃料种类单一 目前,不论是液态氢、气态氢、储氢金属储存的氢,还有碳水化合物经过重整后转换的氢是燃料电池的唯一燃料。氢气的产生、储存、保管、运输和灌装或重整,都比较复杂,对安全性要求很高。但燃料种类的单一性,可以建立标准化、统一的供给系统。 2) 要求高质量的密封 燃料电池的单体电池所能产生的电压约为1V,不同种类的燃料电池的单体电池所能产生的电压略有不同。通常将多个单体电池按使用电压和电流的要求组合成为燃料电池发动机组,在组合时,单体电池间的电极连接时,必须要有严格的密封,因为密封不良的燃料电池,氢气会泄漏到燃料电池的外面,降低了氢的利用率并严重影响燃料电池发动机的效率,还会引起氢气燃烧事故。由于要求严格的密封,使得燃料电池发动机的制造工艺很复杂,并给使用和维护带来很多困难。 3) 比功率还要进一步提高 内燃机的比功率约为300W/kg,以氢为燃料的燃料电池比功率约为300~350W/kg,功率密度为280W/L。甲醇经过重整产生的氢为燃料的燃料电池综合功率密度(包括重整器质量)降低到220W/L。为了满足FCEV动力性能的要求,需要进一步提高燃料电池发动机的比功率。 4) 造价太高 目前质子交换膜燃料电池是最有发展前途的燃料电池之一,但质子交换膜燃料电池需要用贵金属铂(Pt)作为催化剂,其使用量要求达到0.1~0.2mg/cm3,目前用量要求达到0.5mg/cm3,距离要求还较远。而且铂(Pt)在反应过程中受CO 的作用会"中毒"而失效。铂(Pt)的使用和铂(Pt)的失效使质子交换膜燃料电池的造价持高不下。 5) 需要配备辅助电池系统 燃料电池可以持续发电,但不能充电和回收FCEV再生制动的反馈能量。通常在FCEV上还要增加辅助电池,来储存燃料电池富裕的电能和在FCEV减速时接受再生制动时的能量。

㈧ 氢燃料电池和质子交换膜燃料电池哪个更好啊

额,氢燃料电池属于是一种质子交换膜燃料电池。
我弄了一段网络上的说明来,如下:
(1) 氢气通过管道或导气板到达阳极,在阳极催化剂作用下,氢分子解离为带正电的氢离子(即质子)并释放出带负电的电子。
(2) 氢离子穿过电解质(质子交换膜)到达阴极;电子则通过外电路到达阴极。电子在外电路形成电流,通过适当连接可向负载输出电能。
(3) 在电池另一端,氧气(或空气)通过管道或导气板到达阴极;在阴极催化剂作用下,氧与氢离子及电子发生反应生成水。

氢燃料电池中就应用了质子交换膜,这样可以提高效率,保证氢气和氧气完全反应(基本是完全反应)。
对了,我再补充一下,氢燃料电池的效率可达60%以上,而且现在已经有不采用贵金属铂的催化剂,还有,内燃机的效率要受卡诺循环的限制,所以其效率有一个上限而且总是很低。
----------——--——--——--——--——--第X次补充-——--——--——--——--——--——--——--—
对了,实际上质子交换膜燃料电池是一个大类,它包括氢燃料电池、甲醇燃料电池、磷酸燃料电池……
再弄一段网络上的说明:
按其工作温度的不同,把碱性燃料电池(AFC,工作温度为100℃)、固体高分子型质子膜燃料电池(PEMFC,也称为质子膜燃料电池,工作温度为100℃以内)和磷酸型燃料电池(PAFC,工作温度为200℃)称为低温燃料电池;把熔融碳酸盐型燃料电池(MCFC,工作温度为650℃)和固体氧化型燃料电池(SOFC,工作温度为1000℃)称为高温燃料电池,并且高温燃料电池又被称为面向高质量排气而进行联合开发的燃料电池。另一种分类是按其开发早晚顺序进行的,把PAFC称为第一代燃料电池,把MCFC称为第二代燃料电池,把SOFC称为第三代燃料电池。这些电池均需用可燃气体作为其发电用的燃料。

㈨ 燃料电池有哪几种类型

燃料电池的主要类型有:

1、SOFC

固体氧化物燃料电池(SOFC)是一种直接将燃料气和氧化气中的化学能转换成电能的全固态能量转换装置,具有一般燃料电池的结构。

2、RFC

氢燃料电池以氢气为燃料,与氧气经电化学反应后透过质子交换膜产生电能。氢和氧反应生成水,不排放碳化氢、一氧化碳、氮化物和二氧化碳等污染物,无污染,发电效益高。

3、DMFC

直接以甲醇为燃料的质子交换膜燃料电池通常称为直接甲醇燃料电池(DMFC)。膜电极主要由甲醇阳极、氧气阴极和质子交换膜(PEM)构成。阳极和阴极分别由不锈钢板、塑料薄膜、铜质电流收集板、石墨、气体扩散层和多孔结构的催化层组成。

燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此效率高。

(9)非贵金属燃料电池扩展阅读:

燃料电池的优点有:

1、发电效率高

燃料电池发电不受卡诺循环的限制。理论上,它的发电效率可达到85% ~90%,但由于工作时各种极化的限制,目前燃料电池的能量转化效率约为40%~ 60%。

2、环境污染小

燃料电池以天然气等富氢气体为燃料时,二氧化碳的排放量比热机过程减少40%以上,这对缓解地球的温室效应是十分重要的。

3、比能量高

液氢燃料电池的比能量是镍镉电池的800倍,直接甲醇燃料电池的比能量比锂离子电池(能量密度最高的充电电池)高10倍以上。

4、燃料范围广

对于燃料电池而言,只要含有氢原子的物质都可以作为燃料,例如天然气、石油、煤炭等化石产物,或是沼气、酒精、甲醇等,因此燃料电池非常符合能源多样化的需求,可减缓主流能源的耗竭。

5、可靠性高

当燃料电池的负载有变动时,它会很快响应。无论处于额定功率以上过载运行或低于额定功率运行,它都能承受且效率变化不大。

参考资料来源:网络-燃料电池

阅读全文

与非贵金属燃料电池相关的资料

热点内容
8欧元折合人民币汇率 浏览:623
手头有一百万如何投资 浏览:178
泰达基金公司服务热线 浏览:292
抵押贷款安徽银行 浏览:734
开放式基金业务规则 浏览:660
医保基金智能监管中标 浏览:768
期货价格周期共振 浏览:658
期货入金后多久能交易 浏览:877
为什么银行不和期货公司合作 浏览:67
林权项目融资 浏览:531
三角轮胎股票吧 浏览:29
股票行情k线图 浏览:329
基金中报 浏览:97
中国外汇交易市场状况2014 浏览:242
外汇有用的指标 浏览:473
中国工商银行账户贵金属交易规则 浏览:941
标准场内基金费率 浏览:234
放基金 浏览:901
三千人民币多少钱日元 浏览:929
创业融资碰壁 浏览:46