导航:首页 > 股票外汇 > svm股票

svm股票

发布时间:2021-08-11 09:52:12

『壹』 量化投资的主要方法和前沿进展

量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。

『贰』 求支持向量机预测股票价格的MATLAB程序,谢谢!

这个,可多啊,我有

『叁』 什么是量化交易

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历内史数据中海选能带来超额收益的多容种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

『肆』 支持向量机能用到对 股票估值上吗

支持向量机SVM(Support Vector Machine)作为一种可训练的机器学习方法,依靠小样本学习后的模型参数进行导航星提取,可以得到分布均匀且恒星数量大为减少的导航星表 基本情况 Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原理也从线svm 产品
性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。支持向量机的提出有很深的理论背景。 支持向量机方法是在近年来提出的一种新方法。 SVM的主要思想可以概括为两点: (1) 它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而 使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2) 它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全svm 系列产品
局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论,但对多数人来说,以前学到的或常用的是约束条件为等式表示的方式,但在此要用到以不等式作为必须满足的条件,此时只要了解拉格朗日理论的有关结论就行。

『伍』 天狮在美国纳斯达克上市的股价是多少

您好!
感谢您的关注。
天狮在美国纳斯达克上市的股价是3美分!

『陆』 机器学习在量化交易里面有多大的用处

曾有朋友问过,国内现在量化领域机器学习应用的少,是否因为效果不如简单的策略。其实,把机器学习应用在量化交易上始终面临着两难,却并不是无解的两难。很多时候并不是机器学习不work,而是真正懂如何用正确科学的统计思维使用Machine Learning的人才太少。
机器学习涉及到特征选择、特征工程、模型选择、数据预处理、结果的验证和分析等一整套建模流程,广义角度来说就不单单是模型选择的问题。所以,如果认为“用支持向量机成功预测股票涨跌” 这样的研究,就是把机器学习应用于量化交易,这种狭义的认识无疑是买椟还珠,对机器学习领域散落遍地的珍珠视而不见。如果把机器学习的崛起放在历史进程中考量,无非就是趋势的延续:现在,可通过系统的数据分析证实过去模糊不定的经验,机器学习算法将未曾被察觉的规律得以浮现纸面。
在我看来,未来的发展概有两个方向:
1.针对量化交易的统计学习算法被提出,使其适合于噪声大,分布不稳定的金融数据分析;
2.对于机器学习的热情回归理性,从工具为导向回归到问题为导向。
针对如何以问题为导向,在机器学习算法中挑选合适的工具,分享一些思路。
1.多因子模型的因子权重计算
当我们在构建多因子模型且已经选定了一系列因子之后,要如何根据不同的市场情况调整各个因子的权重呢?在以往的研究中发现,与其它算法相比较,随机森林算法对于存在非线性、噪音和自变量共线性的训练集的分析结果更出色。所以,目前在多因子模型的权重上,采用当期收益率对上期因子进行随机森林回归分析,以确定下一期多因子模型的因子权重。
2.缺失值处理
处理缺失值在金融的量化分析中是个无可避免的问题。选取合理的缺失值处理方法,依赖于数据本身的特点、数据缺失的情况、其对应的经济学意义,以及我们需要使用数据进行何种计算。在尝试构建多因子模型时,我们选择了两种缺失值替换方法:(1)采用期望最大化算法 来用同一变量的已知数据对缺失值进行极大似然估计。(2)把模型中包含的所有因子作为特征变量,并赋予其相同的权重,再采用机器学习中的K-近邻算法来寻找最相似的标的,保证缺失值替换后,不会强化一部分因子的影响力。
其实在量化领域,机器学习解决着线性模型天生的缺陷或弊端,所以还是有着很深的介入的。除去凸优化、降维(提取市场特征)等领域的应用,目前“非动态性”和“非线性”是两个重要的弊端。金融关系之间并非静态,很多时候也不是线性的。统计学习的优势此时就会体现出来,它们能够迅速地适应市场,或者用一种更“准确的”方式来描述市场。
在国内,机器学习在量化内应用跟领域有很大的关系,跟频率也有很大的关系。比如,CTA的运用可能就要多于股票,它处理数据的维度要远小于股票,获取市场的长度和动态又强于股票。股票市场的momentum要弱于期货市场的momentum,它的趋势与股票相比更明显和低噪声。这些特征对于机器学习发挥作用都更加有利。
很可能国内一些交易执行算法的设计上就借鉴了机器学习。我们可以通过学习订单薄特征,对下一期盘口变化做一些概率上的预测,经过一定样本的训练之后,可以显著地提升算法表现。
而我仍谨慎看好深度学习等机器学习方法的原因在于,在认识市场上,现行的大部分方法与这些方法并不在一个维度上,这个优势让它们与其他方法相比,捕捉到更多的收益。也就是说,一个新的认识市场的角度才能带来alpha。

『柒』 关于N股与T+1

卖出的为申购原始股中签的

『捌』 SVM回归预测程序问题,求帮助

《MATLAB神经网络30个案例分析》里面有一个用SVM做股票开盘价分析的程序
他里面有这么几句
ts = sh(2:m,1);
tsx = sh(1:m-1,:);
%归一化 。。。
model = svmtrain(TS,TSX,cmd);
[predict,mse, decision_values] = svmpredict(TS,TSX,model);
他这个不是在用训练集预测自己吗?这样有什么意义?
另外我的时间序列每次只有一个数据,预测的时候是不是就只有一个特征?
谢谢!!

『玖』 利用BP神经网络预测股票价格走势

参考 matlab神经网络30例 中有一个股票预测的案例
我觉得svm做这个更好

『拾』 在中国,做量化交易一天的工作是怎样的

做量化交易一天的工作:

8:00~:00: 打开交易策略,设置一些运营参数

9:00~9:30: 观察策略运转,确保没有问题

9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法

15:30~17:00: 分析交易记录, 确定第二天的交易计划

17:00~18:00: 运动

岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持;

岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;

理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);

有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;

(10)svm股票扩展阅读

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,

极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

阅读全文

与svm股票相关的资料

热点内容
富国文体健康股票基金净值 浏览:805
4万5美金多少人民币汇率 浏览:46
新兴股票市场 浏览:33
融出资金业务 浏览:954
美元人民币汇率2019年4月29日 浏览:857
网信理财卷码 浏览:774
东方融汇理财 浏览:492
创业慧康的投资价值 浏览:753
1分钟买涨跌的外汇骗局 浏览:289
桔子理财违约 浏览:46
北京金鸿德投资 浏览:630
2013年我国的外汇储备 浏览:919
人民币升值对中国对外投资 浏览:335
建行理财流 浏览:994
武汉融资网 浏览:213
黄冈本地民间贷款 浏览:875
代办金融资质 浏览:643
存款融资吗 浏览:717
医院融资租赁方案 浏览:378
叮咚小区融资 浏览:94