1. 国外最好的研究神经网络的大学
参考最权威的2015年QS大学历史专业排名:
第一名:哈佛大学
第二名:剑桥大学
第三名:牛津大学
第四名:加利福利亚大学伯克利分校
第五名:耶鲁大学
第六名:伦敦政治经济学院
第七名:普林斯顿大学
第八名:斯坦福大学
第九名:澳大利亚国立大学
第十名:哥伦比亚大学
以上排名每年都有变化,但最强的外国历史专业就在这几家大学之间徘徊。除了耳熟名详的名校外,加州伯克利分校、澳大利亚国立大学、伦敦政治经济学院这三家的历史系非常优秀,学费却远低于美英名校,是更好的选择。
2. 高频交易都有哪些著名的算法
统计套利
另一种策略设置高频交易是经典套利策略可能涉及的范围等几个证券利率平价在外汇市场的关系赋予外国货币之间的价格计价债券的国内债券,一,现货价格货币和价格的远期合约的货币。如果有足够的市场价格从模型中所隐含的不同,以支付交易成本,然后四个交易,可保证无风险的利润。高频类似套戥交易允许使用更复杂,涉及许多超过4证券模式。在塔布集团估计,每年的总延时套利策略目前的低利润超过210亿美元。
统计套利的战略已经制定了一系列决定,使交易的基础上作出的偏差从统计学的关系。像市场庄家策略,统计套利可以适用于所有资产类别。
低延时交易
高频交易是经常混淆低延时交易,使用计算机在几毫秒内执行,或“行业具有极低延迟”在该行业的行话。低延时交易是高度超低延迟网络的依赖性。他们的算法利润提供信息,如竞争性招标,并提供到他们比竞争对手更快微秒。
低延时交易的速度revolutionary in advance已导致need为公司具有即时时间,同位trading平台,以得益于高频率的战略实施。战略是不断改变,以反映市场的细微变化以及打击造成威胁的战略的逆向工程竞争者。
还有一个非常强大的压力不断增加新功能或改进某一特定算法,如client具体的修改和enhancing变化的各种性能(regarding基准交易表现,以及为贸易firm或许多其他的实现range cost减少)。这是由于算法交易策略的演变性质——它们必须能够适应和贸易智能,无论市场条件,这涉及足够的灵活性,能够承受巨大的市场情景阵列。因此,从企业的重大收入净额的比例是花费在研发系统D这些自主交易。
战略的实施
大部分的算法策略是使用现代编程语言,虽然仍有部分执行试算表的设计策略。基本模型可以依靠低至一元线性回归,而更复杂的游戏理论和模式识别或预测模型也可以用于启动交易。神经网络和遗传规划已被用来创建这些模型。
3. 用人工神经网络进行股票预测,数据样本为开盘,收盘,最高,最低,成交量,成交额。用weka或matlab实现
把样本数据分为训练样本和测试样本,然后用训练样本训练网络,用测试样本进行模型验证
4. EA交易本质是什么
外汇交易近两年也受到了人工智能的冲击,EA交易经常出现在交易员的话题中。有人追捧EA交易系统简直完美避免了人性的弱点,有人不相信人生产出来的东西怎么可能战胜人呢?
华尔街60%以上的交易都是通过EA程序化交易完成的,国外相对较成熟。但因为国内还没有开放外汇保证金交易,所以可能也有些汇友一直听说EA交易但不曾了解。今天我就站在中立的角度,客观揭示EA交易系统的真实面目!
01
EA交易模式
所谓EA也就是 Expert Advisor 智能化交易系统的简称。在外汇交易中,EA交易系统是基于MT4或MT5开发的一套程序化自动交易系统,需要结合编程语言和交易策略。
EA交易比外汇托管高一个层次,外汇托管是交给别人操作,至于别人用不用EA自动交易那就不确定了。外汇托管就像是找了个代驾而EA交易就像无人驾驶汽车,按照我们设定好的不同的场景和实况,决定是前进还是转弯。省时省力但是没有十足的把控感!
国外成熟的EA交易系统还分为货币相关类、趋势类、神经网络类、网格类、剥头皮类和综合类6种。不同种类各有优劣势,综合类是对各种类型的取精去糟。EA交易系统可以进行进场、平仓,风险管理和资金管理操作。
EA的核心是交易策略,常用的EA交易模型有3类,顺势类、逆势类和形态类。跟我们平常研究的交易策略类似。
目前交易者获得EA交易系统的方式有3种:购买、自己开发或者利用一些平台搭好的框架生成自己的EA交易系统。
5. AI都能炒股了,以后就要拼谁的算法牛了
人工智能量化交易平台宣布获得数百万人民币融资。据悉,本轮融资将主要用于团队建设、产品开发和硬件设备投入。
是一家基于人工智能的量化投资公司,成立于2017年10月,主要将技术应用于量化投资领域,实现低风险高收益的投资回报。
中国私、公募基金规模呈大跨步发展,截止2018年2月底,中国私募基金规模已达12.01万亿元,公募资金规模已达12.64万亿,在控制风险的前提下,提高获得投资收益的效率,是公、私募投资最大需求,国外盛行的量化交易越来越被国内机构所接受。
在量化交易这个领域,目前已有不少项目:私人量化交易平台JoinQuant、RiceQuant以及优矿,为量化交易领域提供核心算法支持的众加,量化策略商城微量网、以量财富为代表的量化理财平台,以及为量化投资者提供智能交易和分析工具的名策数据。
量化交易策略的建立是量化交易的重要环节。目前主要方式有两种,一种是输入与这套逻辑相关联的因子,比如历史表现、公司财务数据、宏观经济数据、上下游供应商数据等众多参数,建立一套模型,以算出标的上涨或下跌的概率,并生成投资组合和调仓策略。随着近几年人工智能兴起,不少人开始选用机器学习等方式,输入众多因子,让AI自己生成策略。
创始人兼CEO庞表示,的做法则不同,是用神经管网络替代原来用逻辑和策略构建的数学模型,通过输入股票相关数据,利用训练不同结构的神经网络来实现机器自主的量化交易。想做量化交易界的Deepmind(研发阿尔法狗的团队),成为中国的基金。
目前,的首个产品A股机器人“狗”已上线,应用于国内二级市场的投资,产品已实盘测试8个月。数据显示,狗实盘业绩显著,在2017年11月A股普跌的情况下(中证1000跌幅超4%),狗依然实现了5.23%的收益,最大回撤控制在2.7%,并在2018年1月底上证指数大跌12%的情况下,智富狗做到了提前清盘避险,业绩明显优于大盘。
投资人黄表示:“人工智能是非常好的提高效率的方式,非常关注人工智能在各个领域的应用,我们认为以为代表的、基于神经网络的人工智能量化交易平台,能极大地提高大型的高频交易的效率。人的精力有限,一个再好的操盘手也不可能同时看2000支股票,但机器能轻易办到。”
6. 什么是神经网络共识算法
Seele元一综合当前主流共识算法的优缺点,提出了全新基于“微实数”异步排序技术(ϵ-differential agreement, EDA),将共识问题转化为对异步系统中大规模并发请求的处理以及在此环境下数据排序问题。它将共识过程的离散型投票变更为连续型投票,针对不同使用环境实现效率参数可调节,并具有节能降耗、低传输开销和兼容多种网络等优势。神经网络共识算法的线性拓展性使其在100K节点的网络环境下,TPS达到了10W,并首次将交易的确认延迟提升到秒级。
7. 国内外人工神经网络的研究现状
基于人工神经网络的土坝病害诊断知识获取方法
摘要:以土坝测压管水位异常诊断为实例,对反向传播(BP)神经网络进行训练,然后通过典型示例经网络计算生成显式的诊断规则,为专家系统诊断推理时直接调用。该方法是土坝病害诊断知识获取的一种新方法,是对传统知识获取方式的拓展和补充。
关键词:土坝;病害诊断;测压管异常;神经网络;知识获取
我国目前已修建各种类型水库8.6万余座(是世界水库最多的国家之一),大中型水闸7.6万座,河道堤防20多万公里。这些水利工程和设施所发挥的巨大作用和效益大大促进了社会和经济的发展。然而从另一方面还应看到,在已建的水利工程中尚存许多不安全因素,由于修建当时的经济、技术条件限制以及其它一些因素的影响,使很多工程存在病害或隐患,另外,由于长期受各种自然或人为因素影响,加之年久失修,管理跟不上,老化现象也很严重,很大程度上影响了工程正常运行和效益的发挥,有些工程因此而失事。仅就土石坝而,历年累积溃坝率就高达3.4%。因此如何准确、及时地诊断出建筑物的隐患和病害,并对建筑物的安全性做出合理科学的评价意义十分重大。是当前水利工程管理中亟待解决的一项重要课题。水工建筑物的病害诊断是一项非常复杂的工作,需要有丰富经验的专家才能胜任。解决上述问题的一个好的办法是在做好监测的基础上,把专家经验、人工智能(AI)技术、计算机应用技术以及数值分析计算等有机结合起来,建造专家系统(Expert System简称:ES)。而专家系统开发中最关键的“瓶颈”问题就是知识获取,它既包括知识的体系结构、内容等难于获取,也包括推理规则中的推理参数(如可信度)难以确定等。笔者以土坝为研究对象开发了具有学习功能的土坝病害诊断专家系统ESLEDFDS[1,2],在系统开发中为解决知识获取问题,采取了传统的访谈(Interview)式的知识获取与从病害工程实例中抽取知识(事例学习)相结合的形式。实践证明该形式效果良好。论文将以土坝测压管水位异常诊断知识的获取为例,介绍一种基于人工神经网络事例学习的土坝病害诊断知识的获取方法。
1 知识源分析及知识获取方法的选择
土坝病害诊断的知识源主要有3个:(1)坝工诊断专家。大量的经验性知识存在于专家的大脑中,具有专有性和潜在性等特点。有时连专家本人也不容易系统地总结、归纳自己的知识,而且不易做出解释。这也就决定了它的难于获取,但它是ES知识的主要来源。(2)相关文献资料。文献资料作为一种信息载体,包含了大量理论和经验知识。其特点是量大、分散。而且,由于不同的文献来源于不同的著者,对同一问题的看法和分析结果可能有所差异,甚至相悖,所以有助于消除单个专家知识的片面性。但从大量分散的文献中抽取ES知识库所需的知识和方法,需经反复分析比较。(3)实例。一般情况下,专家头脑中知识的存储往往是片断的、非系统的,以访谈的形式,让专家叙述自己的知识时,一个个片断很难一下子系统地组织起来。而一旦真正面对实际问题(实例)坝工诊断专家却能够作很好的分析,说明这种刺激能使专家自觉或不自觉地去组织自己的知识。所以,同专家一同分析实例,可以了解专家的推理过程及所用知识,同时,经过专家分析的工程实例中蕴涵了专家的经验知识和推理判断,并且大多实例分析结果的正确与否已经得到实际验证。因此,实例是一种非常重要的知识源,可以通过一些模型、方法对实例进行学习,提炼出蕴涵在实例中的诊断知识。
笔者在ESLEDFDS的知识获取中综合利用了以上3种知识源。通过走访专家、同专家一起分析文献资料,把诊断知识整理成一条条规则,存储于外部知识库中。此外,为补充专家经验知识的不足,还对收集的80余例土坝病害实例,应用人工神经元网络进行了事例学习和新规则生成。
......
8. 神经网络研究现状
光谱分析因其能够灵敏、高精度、无破坏、快速地检测物质的化学成分和相对含量而广泛应用于分析化学、生物化学与分子生物学、农业、医学等领域。目前,光谱分析技术日趋成熟,引入光谱分析理论的高光谱遥感技术应用日益广泛,尤其是在农业领域,可以有效地获取农田信息、判断作物长势、估测作物产量、提取病害信息。光谱分析技术虽然具有很强的物质波谱“透视力”,但在分析 “同谱异物” 和 “异物同谱”等方面需要与现代分析手段相结合,如小波变换、卡尔曼滤波、人工神经网络(Artificial Neural Net-work,ANN)、遗传算法(Genetic Algorithm,GA)等。
在光谱分析领域,ANN多用于物质生化组分的定量分析(陈振宁等,2001;印春生等,2000),在光度分析中也有较多应用,如,于洪梅等(2002)利用ANN分析铬和锆的混合吸收光谱,并结合分光度法对二者进行测定。ANN在非线性校准与光谱数据处理等方面也有应用(Blank,1993;方利民等;2008)。而在模式识别中ANN应用最为广泛,如,Eiceman et al.(2006)利用遗传算法(是ANN的一种)对混合小波系数进行分类识别。
目前,自组织特征映射(Self-organizing Feature Maps,SOFM)神经网络在高光谱影像的模式识别方面,国内外还较少有研究与应用,而结合遥感波谱维光谱分析技术的应用研究就更少。SOFM常用于遥感图像处理方面,如,Moshou et al.(2005)利用SOFM神经网络进行数据融合,使分类误差减小到1%;Doucette et al.(2001)根据SOFM设计的SORM算法,从分类后的高分辨率影像中提取道路;Toivanen et al.(2003)利用SOFM神经网络从多光谱影像中提取边缘,并指出该方法可应用于大数据量影像边缘的提取;Moshou et al.(2006)根据5137个叶片的光谱数据,利用SOFM神经网络识别小麦早期黄锈病,准确率高达99%。然而,SOFM不需要输入模式期望值(在某些分类问题中,样本的先验类别是很难获取的),其区别于BP(Back Propagation)等其他神经网络模型最重要的特点是能够自动寻找样本的内在规律和本质属性,这大大地拓宽了SOFM在模式识别和分类方面的应用。
基于以上几点,本章从光谱分析的角度对高光谱遥感影像进行分析识别和信息提取,给出了在不同光谱模型下,高光谱数据的不同分解,之后利用SOFM对具有较高光谱重叠度的这些分解进行分类识别,结合光谱分析对采样点进行类别辨识,并通过对小麦条锈病的病情严重度信息提取,提出了高光谱影像波谱维光谱分析的新途径。
9. 神经网络怎样用在外汇交易中
用神经网络算法去预测汇率
望采纳