1. Python数字货币量化交易进阶课程大家学的怎么样了
Python数字货币量化交易进阶课程,已经学完了,大体掌握了。
2. 学习量化交易都有哪些书可以参考
提两本相关的学术著作。一本是2011年的论文集 Econophysics of Order-driven Markets,收录了一系列关于盘口和高频数据建版模的论文。权另一本是2013年的 High-Frequency Trading book,包含一些策略研究和机器学习方面的应用。这两本一定程度上可以反应学界目前对这个领域的研究现状。
3. 有什么量化交易的培训课程
我学过类似的课程,但是我是股市小白 不太懂这个,当时听不懂。 但是真功夫藏经阁里面还是很详细的,每天下午2点半有个超极限交易这么个
4. 想学量化交易的C++编程,有没有比较好的参考书可看
下面这个可以参考一下,具体还要看个人的情况。
我觉得应该根据你的工作需要或者说你的发展方向而定。基本上两大类吧:C/C++和Java。比如,如果你要做企业级应用的你应该学习Java和C#;如果你想做嵌入式,那么应该学好C语言;其他情况下,在你不知道要做什么之前你可以选择学习C/C++。学会这两大类中的一类,对于你学习其他语言都将是比较轻松,包括脚本语言,动态语言„„呵呵,这里想就自己的学习经历和情况给大家一个建议,仅供参考。
1、我的入门是从学习C语言开始的(其实课程是C++),这是我们学校的公共课,我上课比较认真(虽然老师讲得很差,而且一段时间后,我就发现自己的基础掌握比她好,当然理解深度没她好),因此,我认为对于完全没有基础的人而言,听别人讲比较容易入门。当时的教材是学校自己编的,挺烂的。
建议一(以C/C++为例),对于刚想进入编程的人(就是从来都没有接触过编程的人),最好是听课的方式(自己看的话估计要很慢,而且很痛苦),可以找视频或者培训等。C语言推荐入门教材:谭浩强的C语言,最新版是第三版,不过第二版应该也可以了(蓝色的)。说明一下:坚决不同意直接看K&R的《The C programming language》,这本书绝对不是初学者可以看懂的,里面讲语法的并不多,语法都是合在程序里面讲。不过这本书非常好,入门以后一定要看的一本书。
当然可以从C++直接入门,C++之父强烈推荐从C++直接入手。C++推荐入门教材:钱能的C++(红色的,清华大学出版),这本书第一版不是ISO C++,不过比较经典,作者现在也出了第二版了,第二版好像不是太好。国外的最好的入门教材据说是:《Acclerated C++》作者是Koenig和Moo夫妇,非常厉害。他们的著作还有《c陷阱与缺陷》《c++沉思录》。《Acclerated C++》这本入门的书我没有看过,我觉得还是先找本国内的书好好看,看的差不多了,国外的经典书籍随便看就会觉得很有味道,否则你可能会很受打击。入门的书至少要看两三遍(要彻底理解哦 ):)。如果是C++,我建议后面类的部分至少要理解三到五遍。说明一下,c++模板的部分可以先不用看,如果有兴趣的话,等把c++学的差不多了,我觉得可以把模板、STL、泛型编程结合起来学习,这个又是一个很大的工作量了,又得下很大的功夫。所以说,C++博大精深啊。
建议二、学习过程中要结合简单的算法,像冒泡还有类似c语言程序百例这样的小例子做做;更进一步应该做点大一点的项目,最好是控制台程序。或者你已经着手学习win32、MFC或linux,你也可以结合平台做点小的项目。
2、第一阶段是最苦的,接下来相对就知道应该怎么去学习了。这时候假设你已经有了扎实的c++基础。这是你可以选择也应该选择发展方向了,做企业级应用,还是系统开发,嵌入式设计或者游戏开发„„ 那时我其实并没有考虑那么多,因为我不是学计算机的,因此我就把参加一些计算机之类的考试当作学习目标。我当时其实C++语言基础已经很不错了,但是上机实践很少(那时我没有电脑),因此参加省计算机二级,全国计算机三级和全国计算机四级考试,结果上机都没有通过。我很郁闷,二级的时候是我不知道怎么样进那个DOS界面把题目调出来,三级的时候是很快就编好了,也通过运行了,可是成绩出来却不及格,四级的时候是编好了,可能是我那题目比较难,好像用了两次循环,结果那破机器竟然承受不了。后来一乱就毁了(当然主要是上机太少了)。不过我那些上机都没有去补考。二级和三级的时候是自恃水平已经远远超过考试要求了,四级的时候则因为自己已经通过高级程序员考试,觉得补考上机好像没必要。(我高程和四级都是在2003年考的)。
建议三:定位学习方向,并好好学习计算机基础知识。在你还不确定学习方向,或者你还在大学本科期间,那么我认为应该先把计算机的基础知识好好学习一下。我认为计算机必学的基础课程而且要精学——首先是数据结构,其次是操作系统、软件工程,数据库。这四门课不管你将来想从事哪个方向的基本上都会用到。当然,有时间的话,其他基础课都是应该掌握的,离散数学、组成原理、体系结构、网络、编译原理甚至跨学科的。方向是很重要的,因为知识其实是无限的,一个小小的领域就够你研究很久了。本科生可能还没有什么方向的感觉,但是到了研究生你一定要清楚自己到底想要做什么,要往哪个方面发展,不要盲目学,瞎学乱学,否则最后可能看似什么都会,其实什么都不会。
我也曾经学习过Java一段时间,这篇文章既然是谈编程语言的入门学习,我也简单说一说。因为有了比较C++扎实的语言基础,所以Java学起来比较轻松。我先找了国内一本薄薄的教材很快看了一遍(几乎都理解,但是只看了一遍),空闲的时间配合清华张孝详老师的java视频。以后其实才算我真正要开始入门JAVA的学习,我用了是《core java》中文第六版(本来想用候捷翻译的第二版的《Thinking in Java》,发现被同学弄丢了),这本书我差不多用了20天才把里面的知识都搞懂,当然包括程序风格的模拟,最重要的时我把有关GUI编程的那三章里面的程序例子几乎可以默写出来(当然,那是因为我理解了,其实这样就变成了我的知识了),里面的API我也记得差不多了。(说明:Java里面的GUI编程没什么用处了,建议大家先跳过,GUI不是Java的长处,如果以后需要的话再查手册或者再记忆学习)。
其实学习了C++以后,学习Java是比较容易了,但是建议不要两种都学啦,他们的用途是不一样的,你应该熟悉其中一种,更重要的是熟悉其应用领域所需要的专业知识甚至平台,以及使用他们的企业,有创业计划的还应该考虑一下他们的应用领域,最重要的是思考他们的潜在的应用领域。
对于初级的学习就讲到这里,接下去的学习其实都是高级部分,先不介绍了,因为:一、我自己都还没有学懂,这里乱吹会误人子弟。 二、高级东西的学习很多,有很多选择,又需要很多繁琐的知识,可能也一下子没办法讲清楚。
5. 量化分析课程里除了桥博士的qmacd海龟训练营还有什么
我目前正在学桥博士的【K线形态组合分析】课程,它讲的是如何用量化思维去分析k线形态组合。如果你对量化感兴趣可以去尝试下。
6. 用python做量化交易要学多久
5个月。
python凭借其突出的语言优势与特性,已经融入到各行各业的每个领域。一般来说,python培训需要脱产学习5个月左右,这样的时长才能够让学员既掌握工作所需的技能,还能够积累一定的项目经验。当然如果你想要在人工智能的路上越走越远,则需要不断的积累和学习。
python培训的5个月时间里,有相当大一部分时间是在实战做项目,第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编程思想。学完这一阶段的内容,学员已经能够胜任python初级开发工程师的职位。
(6)北京量化交易课程扩展阅读:
Python开发基础课程内容包括:计算机硬件、操作系统原理、安装linux操作系统、linux操作系统维护常用命令、Python语言介绍、环境安装、基本语法、基本数据类型、二进制运算、流程控制、字符编码、文件处理、数据类型、用户认证、三级菜单程序、购物车程序开发、函数、内置方法、递归、迭代器、装饰器、内置方法、员工信息表开发、模块的跨目录导入、常用标准库学习,b加密 e正则logging日志模块等,软件开发规范学习,计算器程序、ATM程序开发等。
7. 学完同济乔博士的《量化分析海龟训练营》课程就可以使用量化交易了吗
【量化分析海龟训练营】课程我没学过,但是我之前学过同济乔博士的【k线形态组合解析】。由于管理的账户收益不错,在公司里从基层员工已经成为一个小管理。
8. 量化分析课程怎么自学最好
我是参加的同济桥博士的量化投资海龟交易法则培训营,觉得这个量化分析培训还不错
9. 量化交易如何入门要学习多长时间
很好入门,多学多看。
学习量化交易,一定要理解它的风险性从何而来。
首先是一二级专市场“级属差”风险,其次是交易员操作风险,最后是系统软件的风险。
第二种风险是交易员操作失误。这同时也牵扯到第三种风险,系统软件风险,每个交易员在系统中都有相应的交易权限,包括数量、金额。
有个业内资深人士带路会事半功倍,尤其对金融爱好者而言,一些理解上的细微偏差,都可能导致整体概念上的错误认识。
比如我就是通过资深人士带着入门的。除了学习量化收益,还学了很多投资理财方面的知识,有各种理财偏好,每个群体对应了不同的投资类型……推敲过后,我选择了无界财富,因为他们风控模式可以看出,比如国有金融机构风控、银行存管这些,比较稳健的方式。
所以说,他不仅是学我习量化交易的前辈,还是我理财的入门引导人,他多次提醒我们不要盲目跟风,以自己的风险承担能力来选择。如果偏好稳健的方式,同样可以选择无界财富这类稳健平台作为入门。
10. 学量化交易全部要哪些书
一本是2011年的论文集 Econophysics of Order-driven Markets,收录了一系列关于盘口和高频数据建模的论文。另一本是2013年的 High-Frequency Trading book,包含一些策略研究和机器学习方面的应用。这两本一定程度上可以反应学界目前对这个领域的研究现状。