1. 黃金分割點 是指什麼
黃金分割點
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,用分數表示為(√5-1)/2,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這個分割點就叫做黃金分割點(golden section ratio通常用φ表示)這是一個十分有趣的數字,我們以0.618來近似表示,通過簡單的計算就可以發現:(1-0.618)/0.618=0.6一條線段上有兩個黃金分割點。
2. 黃金分割點是什麼
把一條線抄段分割為兩部分,襲使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,用分數表示為(√5-1)/2,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這個分割點就叫做黃金分割點(golden section ratio通常用φ表示)這是一個十分有趣的數字,我們以0.618來近似表示,通過簡單的計算就可以發現:(1-0.618)/0.618=0.6一條線段上有兩個黃金分割點。
3. 黃金比例的標準是什麼什麼是黃金分割點
其實就是比率為0.618的特定數學比例值,人類在很早就開始注意到了,只是到了歐洲文藝復興時期才被深刻認識的。一般講,如果人的身材和面部五官的比例要是符合或者接近這個比例,會比較容易產生美感,具有獨特的吸引力,不過也不能迷信這個,人產生美感有很多因素,不僅僅是比例的關系了,比例只是一方面而已。看看這個吧,http://ke..com/view/45073.htm
4. 什麼是黃金分割點
在已知線段上求作一個點,使該點所分線段的其中一部份是全線段與另一部份的比例中項,這就是黃金分割[Golden
Section]問題。如下圖
該點所形成的分割通常稱為黃金分割。
早在公元6世紀古希臘的畢達哥拉斯學派就研究過正五邊形和正十邊形的作圖,因此可推斷他們已經知道與此有關的黃金分割問題。公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的工作,系統論述了黃金分割,成為最早的有關論著。
1228年,義大利數學家斐波那契在《算盤書》的修訂本中提出「兔子問題」,導致斐波那契數列:1,1
,2,3,5,8,13,21,34,……,它的每一項與後一項比值的極限就是黃金分割數,即黃金分割形成的線段與全線段的比值。[即設F1
=1,F2
=1,Fn
=
Fn-2
+
Fn-1,n≥3,則]
中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣,取得很大成績。
在服裝設計和各類美學創作中最常見
5. 什麼是「黃金分割點」
在分割時.在長度為全長的約0.618處進行分割.就叫作黃金分割.這個分割點就叫做黃金分割點.
6. 什麼是黃金分割點
答案:
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。
其比值是一個無理數,用分數表示為(√5-1)/2,取其前三位數字的近似值是0.618。
由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。
這個分割點就叫做黃金分割點(golden section ratio通常用φ表示)這是一個十分有趣的數字,
我們以0.618來近似表示,通過簡單的計算就可以發現:(1-0.618)/0.618=0.6一條線段上有兩個黃金分割點。
7. 黃金分割點的含義是
在分割時.在長度為全長的約0.618處進行分割.就叫作黃金分割.這個分割點就叫做黃金分割點
把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,用分數表示為√5-1/2,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似表示,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。
讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做"菲波那契數列",這些數被稱為"菲波那契數"。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。
菲波那契數列與黃金分割有什麼關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n-1)-→0.618…。由於菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。
一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我們的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什麼?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿後出現的所有三角形,都是黃金分割三角形。
由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18度。
黃金分割點約等於0.618:1
是指把一線段分為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。
利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對於全部之比,等於另一部分對於該部分之比。而計算黃金分割最簡單的方法,是計算斐波那契數列1,1,2,3,5,8,13,21,...後二數之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黃金分割在文藝復興前後,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為"金法",17世紀歐洲的一位數學家,甚至稱它為"各種演算法中最可寶貴的演算法"。這種演算法在印度稱之為"三率法"或"三數法則",也就是我們現在常說的比例方法。