❶ 互联网金融运营需要关注的数据有哪些呢
我觉得互联网金融运营需要关注的数据是非常多的。
用户信息:包括用户信用评级、活跃度、留存率、转化率、客单价、用户分布、互动指标等。
产品信息:产品组合、投资人数、投资金额、满标时间、收益率、风险系数、受欢迎度等。
营销渠道信息:渠道来源、渠道转化率、渠道成功率、渠道成本等。
营销活动信息:活动成本、活动渠道来源、活动转化率、传播数、新增粉丝数/用户数等。
风控信息:项目审核通过率、风险备用金、项目流动性风险指标、合规相关指标等。
❷ 互联网消费金融的核心能力有哪些
首先要过政策关,要紧跟政府政策的风向标,指哪打哪,有了政策的支撑,许多项目都不是难题。另外,必须研读相关的法律法规,不能触碰法律红线。
其次,要具备风险应对能力。任何金融都可能产生坏账,死账,必须通过多种方式化解风险。比如与其它的基金等金融机构合作,准确的风险评估等。
再次,要结合互联网消费的特点,制定相应的金融方案。互联网消费往往具有小额,人员分散,信誉度不确定等特点,这就要求金融企业保持较高的灵活度,尽可能建立完善的信用评估体系,并拥有较高的金融产品定价的技术。
最后,人才队伍建设才是最核心的能力。创新人才的发掘,和金融精英的介入,一定能使这个行业做大做强。
❸ 互联网金融运营需要关注的数据有哪些
由于互联网金融概念较为宽泛,支付、投资理财、信贷、征信、虚拟货币发行(比特币等)、金融产品搜索等不同领域所关注的核心指标并不相同;即便是相同领域 的公司,由于核心业务模式的差异导致大家所关注指标也不相同。因此从运营角度来看,最靠谱的是结合公司的核心业务模式来归纳运营指标。
互联网金融公司的金融属性,从经营风险的角度来看,风险贯穿互联网金融公司的企业日常运营、IT平台运营等过程,这与普通互联网公司的运营主要关注产品运 营有极大不同,因此以下所指的运营并不单纯指普通互联网公司的运营部门的运营,而是从整个互联网公司企业运营角度来说的。
根据互联网共性可以总结出对应量化指标体系:
1、用户指标:包括用户信用评级、活跃度、留存率、转化率、客单价(平均投资额度)、用户分布(各等级占比)、互动指标等等。
2、产品指标:产品组合、投资人数、投资金额、满标时间、收益率、流标数、风险系数、热度(受欢迎度)等等。
3、营销渠道指标:渠道来源、渠道转化率、渠道成功率、渠道成本等等
4、营销活动指标:活动成本、活动渠道来源、活动转化率、传播数、新增粉丝数/用户数等等
5、合作方指标:合作带来的项目数、项目通过率、风险系数、成本等等
6、风控指标:项目审核通过率、风险备用金、项目流动性风险指标、合规相关指标等等
7、支付渠道指标:渠道转化率、渠道成功率、支付渠道来源、渠道成本等等
8、IT平台指标:用户体验指标(包括响应速度等)、可靠性指标、安全性指标等等。这块与互联网的指标类似。
9、客服指标:投诉分类、接通率、投诉渠道、响应速度、满意度等等
10、竞争性指标:竞争对手分析指标、互联网舆情监控指标等等
运营不要只关注那些数据,数据是外在的,是基础,而产品和平台核心竞争力才是发展的王道,数据+产品,找到平台最优的发展平衡点,才是运营下的这盘棋的目的。
❹ 互联网金融运营需要关注的数据有哪些
如果是互复联网金融方面制的网站,看你用了什么推广营销的方法;
1、如果你是靠SEO,那么需要关注网站的UV、PV、跳出率、平均访问深度、注册量、转化率、以及投资金额等;
2、如果是付费推广的方法,可以重点关注转化率、UV(独立访客数)、投资金额等等
❺ 互联网消费金融的优势有哪些
答:
1、政策方面
众所周知,我国在亚洲金融危机之中正式提出发展消费金融,中国人民银行在1998年和1999年相继放开了个人住房贷款和汽车消费贷款的政策,以促进以商业银行为主导的金融机构开展消费金融业务。这也是发展消费金融对扩大内需、促进消费、促进经济发展结构合理化发展具有重要意义。同时,在今年的两会期间,政府工作报告中也提出“要在全国开展消费金融公司试点,鼓励金融机构创新消费信贷产品”,消费金融成为热点词汇。据了解,2016年3月人民银行、银监会联合印发 《关于加大对新消费领域金融支持的指导意见》,政策利好成为推动行业发展的重要力量。
2、技术优势
互联网消费金融与传统消费金融的不同之处在于互联网消费金融利用了互联网技术的优势,打造“线上互联网+线下实体”的运行模式。从事互联网消费金融的机构在资金来源上有一定的优势,通过探索信用消费+场景布局,进而打造成一个全新的“互联网+”的样本,通过场景的建立,增强客户粘性,不断扩张消费金融市场,实现盈利。随着云计算的普及,大数据挖掘的成本大幅度降低,可以利用大数据技术精确的进行市场细分、选定目标客户、评估客户信用等级,从而降低资金配置风险,提升风险管理能力。
3、市场需求
随着我国居民生活水平的逐渐提高,消费需求也更加旺盛,8090后超前消费意识逐渐增强,接受新型金融产品的能力较强,因此使用消费信贷手段来缓解预算不足的观念逐渐深入,因此,在居民消费观念日益成熟的背景下,发展消费金融已经具备相应的社会基础。而作为解决资金问题之一的消费金融系统必将迎来发展商机,像迪蒙自主研发的消费金融系统是一款集消费贷款、消费分期为一体的业务管理系统,有效帮助企业迅速开拓消费市场,推动消费金融业务发展,实现业务模式的“互联网+”转型。系统通过规则引擎、工作流引擎、自动征信、商家加盟的方式,实现借款业务的快速审批、智能风控、借款流程自定义等功能,满足消费金融公司快速、高效、便捷的借款业务需求。
❻ 如何进行互联网金融运营数据的分析,都有哪些方法
来源于:知乎
大部分的互联网金融公司最为纠结的一点是,流量这么大,获客成本这么高,为什么最后的的转化率和成单量却这么低?怎样才能提高用户运营效率?用户行为数据分析怎样把处在不同购买决策阶段的用户挑选出来,帮助互联网金融公司做到精益化运营?
我们的客户中很大一部分来自互联网金融,比如人人贷等行业前 10 的互联网金融公司。在服务客户的过程中,我们也积累了大量的数据驱动业务的实践案例,来帮助客户创造价值。
一 、互联网金融用户四大行为特征
互联网金融平台用户有四大行为特征:
第一流量转化率低,下图是某互联网金融公司网站上,新客户过去 30 天整体购买转化漏斗,其转化率只有 0.38%:
而这并非个例,实际上,绝大多数互联网金融公司,在 web 端购买的转化率基本都在 1% 以下,APP购买率在 5% 左右,远远低于电商或者其他在线交易的购买率。
第二,虽然转化率低,但是客单价却很高。一般来说,电商行业客单价在几十到几百,而互联网金融客户,客单价从几千到几万,某些特殊领域甚至高达几十万。而客单价高,就意味着用户购买决策会更复杂,购买周期也会更长。
第三,用户购买行为有很强周期性。电商的客户下次购买时间是不确定的,但是互联网金融平台上,真正购买的用户,是有理财需求的用户,在资金到期赎回产品后,一定还会进行下一次购买,只不过未必发生在你的平台上。
可以看到,每隔一段时间,这个用户就会有一段集中的、大量的交互行为。当用户购买完成后,用户的交互行为又变得很少,可能偶尔来看看产品的收益率,但整体的交互指标不会太高,直到他下一次购买。这个用户理财需求的周期是一个月左右。
最后一个特点是「很强的特征性」,主要包括两个特征:
A:用户的购买偏好比较容易识别,理财产品数量和品类都很少,所以用户购买的需求或者偏好,很容易从其行为数据上识别出来。
B:用户购买过程中的三个阶段特别容易识别:
用户在购买决策阶段,有大量的交互事件产生,他会看产品,比对不同产品的收益率和风险,比对不同产品的投资期限等等;
但是一旦他完成了产品的购买,就不会有大量的交互行为产生,他可能仅是回来看一看产品的收益率。
当用户的产品资金赎回之后,又有大量的交互事件产生,实际上他处在下一款产品购买的决策期。
二、互联网金融用户运营的三大步骤
针对互联网金融用户行为的四个特征,在用户运营上有三个比较重要的阶段性工作:
1.首先,获取可能购买的目标用户,合理配置在渠道上的投放预算,以提高高质量用户获取的比例:
渠道工作的核心,主要是做好两方面的工作:宏观层面,优化整个渠道的配置;微观层面,单一渠道角度来说,根据渠道配置的策略,有针对性地实施和调整。
具体渠道的实施,大家都比较熟悉,但是对于整个渠道组合配置的优化,很多人接触的其实并不多。
这张图是整体转化漏斗,从不同维度可以做对比,比如我们先选出流量前 10 的渠道:
以渠道一为例,总体的转化率是 0.02%;在过去 30 天站内总体的流量是 18.9K,漏斗第一级到第二级的转化率是 3.36%,这样一共是五级,我们看到最终渠道一带来总体的成交用户一共是 4 人。
类似的,前 10 的渠道数据都很清晰。不同渠道带来的流量,不同渠道总体的转化率,以及不同渠道在整个转化路径上每步的转化率都可以看到。
这里面有几个渠道很有特点:
渠道一的特点,渠道一带来的流量是所有 10 个渠道里最大的,但是它的总体转化率却是低的;
渠道二和渠道七,渠道二的量很大,但是转化率是零。渠道七量比较一般,转化率也是零;
渠道九和渠道十,这两个渠道是所有渠道里转化率最高的。但是这两个渠道特点,是带来流量不是特别大……
第一象限(右上角)渠道质量又高,带来流量又大的,这里面渠道三四五是符合这个特征的,渠道策略应该是继续保持和提高渠道的投入。
第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。
我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。
第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。
根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。
2.接下来就要把高价值的用户——真正有购买需求,愿意付费、购买的用户找出来。
将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户?
其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。
把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括:
用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。
既然用户行为数据这么重要,那么怎样获取呢?GrowingIO 以无埋点的方式,全量采集用户所有的行为数据,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。
这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为:
每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。
这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。
这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。
拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。
这是在把用户在过去 14 天内,由其产生的所有行为数据,按照购买意愿打分的权重,把打分大于 5 的用户找出来,在总体用户里,这部分用户购买意愿排名前 20% ,我们给它起个名字,叫购买意愿强烈的用户。
类似我们还做了购买意愿中等的用户分群,这是购买意愿排名在 20-60% 之间的用户;购买意愿排名在最后 40% 的用户,是购买意愿最弱的用户分群。
分群之后,点击任意一个分群,都会以用户 ID 的形式列出来。因为你要有用户的 ID ,才能对这些用户施加运营策略。每个用户最近 30 天的访问次数,最近的访问地点,最后一次访问时间都可以看到。
接下来针对这些购买意愿强烈的用户,怎样推动用户的转化呢?
3.采取针对性的运营策略,提高高价值用户的转化率。
首先我们来看一下购买偏好,互联网金融平台商品品类是比较少的,用户购买的目的性也比较清晰,一般商品的品类有这么几种:
第一种:债券型理财产品
第二种:股票型理财产品
第三种:货币型理财产品
第四种:指数型理财产品
第五种:混合型理财产品…
我们把用户在不同品类商品上的访问时长占比算出来,就能比较好地了解用户的购买偏好。比如下图,我们用用户访问债券型产品详情页的访问时长,除以用户在站内总体的访问时长,就能够得到用户在债券产品上访问时长占比的指标。
我们还是使用用户分群的工具,把在债券型产品上的访问时长占比大于40%的用户分出来,这是有非常强烈表征的客户,他购买的偏好就是债券型的产品。
同时我们再设定另外一个指标,比如用户购买意愿指标,之前我们做过大于5,也就是购买意愿排名在前 20% 的。
通过这两个条件,我们就可以把购买偏好是债券型产品,同时有强烈购买意愿的用户找出来,这两个指标的关系是并(and)的关系。同样我们可以按照用户的购买偏好,把关注其他品类的用户,都做成不同的用户分群,然后形成不同购买偏好的用户群体。
针对这些用户,其实在运营策略上,我们可以从三个层面来展开来进行做:
从购买阶段的角度,首先我们把所有用户可以分成新客和老客。对于这两个群体来说,运营策略和运营重点是非常不一样的。
新客群体,是从来没有在平台上发生过购买的用户,我们要根据用户的购买意愿,做进一步的运营。
老客群体,也就是在平台上已经发生过产品购买的用户,除了关注用户的购买意愿之外,用户的资金状态(资金是否赎回)也是非常重要的参数。
用户是否购买过产品?购买产品的用户是否已经赎回资金?这两个内容,其实是一个用户当前的属性。在我们分群的工作里,这有个维度的菜单,通过这个维度菜单,我们就可以把具有某种属性的用户找出来:
这里我做了一个分群,我们可以看一下。在维度的菜单里,我们把是否购买过产品的维度值设置成了 1 。把资金是否已经赎回这个维度的值,也设置成了 1 。实际上是把那些资金已经赎回的老用户找出来;同样在指标这个菜单里,我们同时也把有强烈购买意愿的用户找出来,时间是过去 14 天,指标大于 5 。
这样我们就制作了一个用户分群,而这个用户分群里所有用户,要满足下面的三个特征:
特征一:购买过产品的老客。
特征二:他们的资金,目前已经赎回了。
特征三:过去 14 天内的行为数据,表明这个用户有着强烈的购买意愿。
同理我们把所有用户,整理为下面几个不同类别,对应不同的运营策略:
比如新客里,当前有购买意愿的,其实他属于购买决策期的新用户。应该根据用户的购买偏好,推荐这种比较优质的理财产品。并给予一定的购买激励,来促进这些新客在平台上的第一次购买,这个对于新客来说是非常重要的,以此类推。
相比于电商或者其他行业,互联网金融平台结合行业和用户的特点,从用户行为数据分析的角度,驱动产品业务以及提高用户的转化率,有更加重要的意义。
❼ 互联网金融运营需要关注的数据有哪些
由于互联网金融概念较为宽泛,支付、投资理财、信贷、征信、虚拟货币发行(比特币等)、金融产品搜索等不同领域所关注的核心指标并不相同;即便是相同领域的公司,由于核心业务模式的差异导致大家所关注指标也不相同。因此从运营角度来看,最靠谱的是结合公司的核心业务模式来归纳运营指标。
不妨先看看一家互联网金融公司正常运营要关注的问题(其实也是核心业务模式):
1、目标用户是谁,目标用户的分级体系?
2、提供什么样金融产品,金融产品的核心价值?例如收益、风险、流动性等
3、通过什么渠道找到目标用户?例如搜索引擎竞价、微信、APP、朋友圈、渠道合作伙伴等等
4、举办什么样的营销活动来扩大影响力,拓展新用户、提升老用户活跃度?
5、合作伙伴是谁?包括担保公司、保理、信托、银行、渠道合作等
6、怎样进行风险控制?包括政策法规风险、项目风险、系统风险、操作风险等
7、用户通过什么渠道投融资(支付)?第三方支付、网银转账、线下汇款、移动支付、POS等等
8、怎样搭建NB的IT支撑平台?用户体验要好、系统要安全可靠稳定等等
9、怎样服务好用户?客服体系、运营体系等等的搭建
10、怎样从众多竞争对手中脱颖而出,建立品牌形象并维系好品牌形象?
针对以上问题,可以总结出对应量化指标体系:
1、用户指标:包括用户信用评级、活跃度、留存率、转化率、客单价(平均投资额度)、用户分布(各等级占比)、互动指标等等。
2、产品指标:产品组合、投资人数、投资金额、满标时间、收益率、流标数、风险系数、热度(受欢迎度)等等。
3、营销渠道指标:渠道来源、渠道转化率、渠道成功率、渠道成本等等
4、营销活动指标:活动成本、活动渠道来源、活动转化率、传播数、新增粉丝数/用户数等等
5、合作方指标:合作带来的项目数、项目通过率、风险系数、成本等等
6、风控指标:项目审核通过率、风险备用金、项目流动性风险指标、合规相关指标等等
7、支付渠道指标:渠道转化率、渠道成功率、支付渠道来源、渠道成本等等
8、IT平台指标:用户体验指标(包括响应速度等)、可靠性指标、安全性指标等等。这块与互联网的指标类似。
9、客服指标:投诉分类、接通率、投诉渠道、响应速度、满意度等等
10、竞争性指标:竞争对手分析指标、互联网舆情监控指标等等
❽ 金融科技一线调查(1):消费金融的大数据风控怎么玩
金融的核心是风控,做大数据风控,其实是件苦差事。P2P公司拍拍贷前三轮融资中绝大部分的资金都投入到了自主研发的"魔镜"风控系统——系统数据库里也有近千个变量来评估借款人信用,目前平台发放的贷款平均周期是10个月,至少要5到6个周期,才可以保证模型验证训练的有效性。那么,怎么来防范用户多头负债的风险呢?拍拍贷决定开放数据,信息共享。“希望未来能够对每个人个性化的来识别、授信和定价。”拍拍贷CEO张俊表示。
大数据风控的背后有着这样的逻辑——以央行征信数据为基础,辅以自身采集的大量数据,建模,不断反复训练验证,直到模型有能力快速处理大规模用户的信贷审批需求。
犹如硬币的两面,记者调查中发现,目前行业内并无统一的坏账判定标准,各家机构对自身坏账率也是讳莫如深。更有公司,没有经过长周期的数据采集和系统迭代,外包系统,急于上线,大数据风控成了营销的噱头。
与此同时,一些企业基于自身大数据模型,开始涉足征信。浦发银行战略发展部总经理李麟认为,消费金融属于传统的“银行系基本产品”,“线下信用都不过关,更何况线上”,同时征信数据信息采集的合法性和客户的隐私安全都亟待法律的完善。李麟表示,“良好的信用关系应当在制度规范下,线下先形成再推至线上,这样的效果比直接在线上建立要好。”
❾ 互联网金融运营需要关注的数据有哪些
互联网金融公司正常运营要关注的问题(其实也是核心业务模式):
1、目标用户是谁,目标用户的分级体系?
2、提供什么样金融产品,金融产品的核心价值?例如收益、风险、流动性等
3、通过什么渠道找到目标用户?例如搜索引擎竞价、微信、APP、朋友圈、渠道合作伙伴等等
4、举办什么样的营销活动来扩大影响力,拓展新用户、提升老用户活跃度?
5、合作伙伴是谁?包括担保公司、保理、信托、银行、渠道合作等
6、怎样进行风险控制?包括政策法规风险、项目风险、系统风险、操作风险等
7、用户通过什么渠道投融资(支付)?第三方支付、网银转账、线下汇款、移动支付、POS等等
8、怎样搭建NB的IT支撑平台?用户体验要好、系统要安全可靠稳定等等
9、怎样服务好用户?客服体系、运营体系等等的搭建
10、怎样从众多竞争对手中脱颖而出,建立品牌形象并维系好品牌形象?
针对以上问题,可以总结出对应量化指标体系:
1、用户指标:包括用户信用评级、活跃度、留存率、转化率、客单价(平均投资额度)、用户分布(各等级占比)、互动指标等等。
2、产品指标:产品组合、投资人数、投资金额、满标时间、收益率、流标数、风险系数、热度(受欢迎度)等等。
3、营销渠道指标:渠道来源、渠道转化率、渠道成功率、渠道成本等等
4、营销活动指标:活动成本、活动渠道来源、活动转化率、传播数、新增粉丝数/用户数等等
5、合作方指标:合作带来的项目数、项目通过率、风险系数、成本等等
6、风控指标:项目审核通过率、风险备用金、项目流动性风险指标、合规相关指标等等
7、支付渠道指标:渠道转化率、渠道成功率、支付渠道来源、渠道成本等等
8、IT平台指标:用户体验指标(包括响应速度等)、可靠性指标、安全性指标等等。这块与互联网的指标类似。
9、客服指标:投诉分类、接通率、投诉渠道、响应速度、满意度等等
10、竞争性指标:竞争对手分析指标、互联网舆情监控指标等等