① 什么是arch模型和garch模型
1、ARCH模型(Autoregressive conditional heteroskedasticity model)全称“自回归条件异方差模型”,解决了传统的计量经济学对时间序列变量的第二个假设(方差恒定)所引起的问题。
2、GARCH模型称为广义ARCH模型,是ARCH模型的拓展,由Bollerslev(1986)发展起来的。
(1)GARCH模型(波勒斯勒夫(Bollerslev),1986年)。GARCH(p,q)模型为:
(1)尖峰模型国际金融扩展阅读:
GARCH的发展:
传统的计量经济学对时间序列变量的第二个假设:假定时间序列变量的波动幅度(方差)是固定的,不符合实际,比如,人们早就发现股票收益的波动幅度是随时间而变化的,并非常数。这使得传统的时间序列分析对实际问题并不有效。
罗伯特·恩格尔在1982年发表在《计量经济学》杂志(Econometrica)的一篇论文中提出了ARCH模型解决了时间序列的波动性(volatility)问题,当时他研究的是英国通货膨胀率的波动性。
② 跑跑GF什么时候出尖峰SR
这个不太好说的,不过应该在五一左右吧!
合金和暴烈都出的这么快,尖锋也慢不了的,
③ 金融数据的尖峰厚尾特征是什么意思
金融数据的尖峰厚尾特征是相比较标准正态分布来说的,标准正态分布的偏度为0,峰度为3,通常做实证分析时,会假设金融数据为正态分布,这样方便建模分析。
但是实证表明,很多数据并不符合正态分布,而更像尖峰厚尾,就是峰度比3大,两边的尾巴比正态分布厚,没有下降得这么快。
厚尾分布主要是出现在金融数据中,例如证券的收益率。 从图形上说,较正态分布图的尾部要厚,峰处要尖。
直观些说,就是这些数据出现极端值的概率要比正态分布数据出现极端值的概率大。因此,不能简单的用正态分布去拟合这些数据的分布,从而做一些统计推断。一般来说,通过实证分析发现,自由度为5或6的t分布拟合的较好。
(3)尖峰模型国际金融扩展阅读:
基金收益率不服从正态分布,存在显著的尖峰厚尾特性,我国基金市场还不是有效市场。人民币汇率收益率波动有集群性效应,不符合正态分布,有尖峰厚尾的特点。结果表明稳定分布能更好的拟和中国股票收益率的实际分布,稳定分布较好的处理中国股票市场中的“尖峰尾”现象。
但很多资本市场上的现象无法用EMH解释,如证券收益的尖峰厚尾,证券市场的突然崩溃,股价序列的长期记忆性等。对期货价格数据进行统计分析,发现期货价格具有“尖峰厚尾”特性。实证结果表明:我国股价波动具有尖峰厚尾特征、异方差性特征和波动的持续性和非对称特征。
而股票市场的收益率从分布的角度看,并不服从标准的正态分布,而是呈现出一种“尖峰、厚尾”的特征。
④ 金融时序为什么大多是尖峰厚尾
群集效应,即方差间的自相关现象。
⑤ AR模型的MA模型
MA模型(moving average model)滑动平均模型,模型参量法谱分析方法之一,也是现代谱估中常用的模型。
设一个离散线性系统,输入u(n)是一个具有零均值与方差为σ的白噪声序列,输出是x(n),该离散线性系统的输出和输入之间的关系可用如下图3的差分方程来表示。
其系统函数为图4。
式中X(Z)为输出信号x(n)的Z变换,U(Z)为输入信号u(n)的Z变换,br(r=0,…M)是系数。式①表达的信号模型称为MA模型,又称移动平均模型。按公式的物理意义可以解释为模型表示现在的输出是现在和过去M个输入的加权和。按②式,MA模型是一个全零点模型。
用MA模型法求信号谱估计的具体作法是:①选择MA模型,在输入是冲激函数或白噪声情况下,使其输出等于所研究的信号,至少应是对该信号一个好的近似。②利用已知的自相关函数或数据求MA模型的参数。③利用求出的模型参数估计该信号的功率谱。
在ARMA参数谱估计中,大多数估计ARMA参数的两步方法都首先估计AR参数,然后在这些AR参数基础上,再估计MA参数,然后可求出ARMA参数的谱估计。所以MA模型参数估计常作为ARMA参数谱估计的过程来计算。
⑥ 您好,我想请问下您有没有在simulink中仿真过statcom模型,我仿真出现了尖峰的波形,不知道为什么
冒个泡。。。
⑦ 高达模型的区别
TV版是1/100的比例,没有内部结构,组装较为简单。
MG可以说是大师级,有内部结构(即骨架)。零件多,活动性高,分色良好,各方面都不错。也是1/100的比例。
PG则是完美级,有十分精细的结构。是高达模型的尖峰之作,活动性,分色等是所有高达模型中最好的,当然价格也昂贵。比例是1/60.
详细的可以去这个网站,会有帮助的。
http://www.78dm.net/indexgd.htm
⑧ 什么叫官方模型
刻一个噪声的发生是服从正态分布。该正态分布的均值为零,方差是一个随时间变化的量(即为条件异方差)。并且这个随时间变化的方差是过去有限项噪声值平方的线性组合(即为自回归)。这样就构成了自回归条件异方差模型。
由于需要使用到条件方差,我们这里不采用恩格尔的比较严谨的复杂的数学表达式,而是采取下面的表达方式,以便于我们把握模型的精髓。见如下数学表达:
Yt = βXt+εt (1)其中,
* Yt为被解释变量,
* Xt为解释变量,
* εt为误差项。
如果误差项的平方服从AR(q)过程,即εt2 =a0+a1εt-12 +a2εt-22 + …… + aqεt-q2 +ηt t =1,2,3…… (2)其中,
ηt独立同分布,并满足E(ηt)= 0, D(ηt)= λ2 ,则称上述模型是自回归条件异方差模型。简记为ARCH模型。称序列εt 服从q阶的ARCH的过程,记作εt -ARCH(q)。为了保证εt2 为正值,要求a0 >0 ,ai ≥0 i=2,3,4… 。
上面(1)和(2)式构成的模型被称为回归-ARCH模型。ARCH模型通常对主体模型的随机扰动项进行建模分析。以便充分的提取残差中的信息,使得最终的模型残差ηt成为白噪声序列。
从上面的模型中可以看出,由于现在时刻噪声的方差是过去有限项噪声值平方的回归,也就是说噪声的波动具有一定的记忆性,因此,如果在以前时刻噪声的方差变大,那么在此刻噪声的方差往往也跟着变大;如果在以前时刻噪声的方差变小,那么在此刻噪声的方差往往也跟着变小。体现到期货市场,那就是如果前一阶段期货合约价格波动变大,那么在此刻市场价格波动也往往较大,反之亦然。这就是ARCH模型所具有描述波动的集群性的特性,由此也决定它的无条件分布是一个尖峰胖尾的分布。