导航:首页 > 基金投资 > 基于模糊聚类分析方法的股票投资风险研究

基于模糊聚类分析方法的股票投资风险研究

发布时间:2021-07-15 07:39:38

『壹』 模糊聚类分析方法与聚类分析法有哪些优点

模糊聚类(FCM)是聚类分析方法中的一种,是模糊数学融入K-means,对其进行改进。一般的划分算法,如K-means,是把数据划分到不相交的类中的。即每个数据通过计算最终都将属于一个且唯一一个聚类。然而客观世界中大量存在着界限并不分明的聚类问题。模糊聚类扩展了传统聚类的思想。FCM考虑一个靠近两个类边界的对象,它离其中的一个稍微近一些,如果对每一个对象和每一个类赋予一个权值,指明该对象属于该簇的程度(被称为隶属度),通过使用隶属,使得可以把每一个数据分配给所有的聚类,不同于传统的聚类方法,模糊聚类的结果使得每个数据最终可能属于多个聚类,每个数据对每个聚类分配一个隶属度。聚类的结果可以表示为一个模糊矩阵。实际上,就是为提高聚类的分类效果的一种改进方法。
另外,聚类分析的优势是通过树立的角度对数据做智能划分,免去人工划分的痛苦。同时,一个对象由若干种不同性质的属性构成,通过聚类进行分类,为人们做决策提供参考。

『贰』 MATLAB基于模糊聚类分析方法

function Z=hecheng(X,X)
[m,m]=size(X);z=zeros(m,m);p4=zeros(1,m);
for i=1:m
for j=1:m
for k=1:m
p4(1,k)=min(X(i,k),Y(k,j));
end
Z(i,j)=max(p4);
end
end
应该能用!

『叁』 数学建模中模糊聚类分析法的优缺点

数学建模中模糊聚类分析法优点:聚类分析模型的优点就是直观,结论形式简明。 缺点:在样本量较大时,要获得聚类结论有一定困难。
由于相似系数是根据被试的反映来建立反映被试间内在联系的指标, 而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相 似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法。

模糊划分矩阵有无穷多个,这种模糊划分矩阵的全体称为模糊划分空间。最优分类的标准是样本与聚类中心的距离平方和最小。因为一个样本是按不同的隶属度属于各类的,所以应同时考虑它与每一类的聚类中心的距离。逐步聚类法需要反复迭代计算,计算工作量很大,要在电子计算机上进行。算出最优模糊划分矩阵后,还必须求得相应的常规划分。此时可将得到的聚类中心存在计算机中,将样本重新逐个输入,去与每个聚类中心进行比较,与哪个聚类中心最接近就属于哪一类。
这种方法要预先知道分类数,如分类数不合理,就重新计算。这就不如运用基于模糊等价关系的系统聚类法,但可以得到聚类中心,即各类模式样本,而这往往正是所要求的。因此可用模糊等价关系所得结果作为初始分类,再通过反复迭代法求得更好的结果。

『肆』 聚类分析方法应用于哪些问题的研究

1.聚类分析的特点
聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类.它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大.这种方法有三个特征:适用于没有先验知识的分类.如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观.这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类.例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术.
这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考.其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本.
2.应用范围
聚类分析在客户细分中的应用

消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的.常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法.聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程.
例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定.要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类.在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等.除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考.
以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现.

聚类分析在实验市场选择中的应用

实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试.通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广.
实验调查法最常用的领域有:市场饱和度测试.市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标.企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度.或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力.前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验.这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验.波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡.然而新产品投放市场后的失败率却很高,大致为66%到90%.因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的.
在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验.这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同.
通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性.聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量

『伍』 模糊聚类分析方法与聚类分析法有哪些优点

涉及事物之间的模糊界限时按一定要求对事物进行分类的数学方法。聚类分析是数理统计中的一种多元分析 模糊聚类分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地划分类型。事物之间的界限,有些是确切的,有些则是模糊的。例如人群中的面貌相像程度之间的界限是模糊的,天气阴、晴之间的界限也是模糊的。当聚类涉及事物之间的模糊界限时,需运用模糊聚类分析方法。模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。

『陆』 您好,看过你的百度回答,感觉您是个统计方法方面的专家,请教你个问题,模糊聚类分析能用spss做吗

能啊
看看这本书spss全解
做建模挺有用的

『柒』 《基于模糊聚类分析在大数据处理上的应用》 毕业论文题目、求大神指点一二,从什么点突破比较好

在动笔之前要做好充分的准备,一旦下笔之后,则要坚持不懈地一口气写下去,务必在最短时间内拿出初稿。这是许多文章家的写作诀窍。有的人写文章喜欢咬文嚼字,边写边琢磨词句,遇到想不起的字也要停下来查半天字典。这样写法,很容易把思路打断。其实,初稿不妨粗一些,材料或文字方面存在某些缺陷,只要无关大局。暂时不必去改动它,等到全部初稿写成后,再来加工不迟。鲁迅就是这样做的,他在《致叶紫》的信中说:
先前那样十步九回头的作文法,是很不对的,这就是在不断的不相信自己——结果一定做不成。以后应该立定格局之后,一直写下去,不管修辞,也不要回头看。等到成后,搁它几天,然后再来复看,删去若干,改换几字。在创作的途中,一面炼字,真要把感兴打断的。我翻译时,倘想不到适当的字,就把这些字空起来,仍旧译下去,这字待稍暇时再想。
否则,能因为一个字,停到大半天。这是鲁迅的经验之谈,对我们写毕业论文也极有启发。

『捌』 模糊聚类分析法和聚类分析法有什么区别,还有一种动态模糊分析法,它比模糊分析法有什么样的改进。

模糊聚类分析是聚类分析的一种。聚类分析按照不同的分类标准可以进行不同的分类。就好像人按照性别可以分成男人和女人,按照年龄可以分为老中青一样。聚类分析如果按照隶属度的取值范围可以分为两类,一类叫硬聚类算法,另一类就是模糊聚类算法。隶属度的概念是从模糊集理论里引申出来的。传统硬聚类算法隶属度只有两个值 0 和 1。 也就是说一个样本只能完全属于某一个类或者完全不属于某一个类。举个例子,把温度分为两类,大于10度为热,小于或者等于10度为冷,这就是典型的“硬隶属度”概念。 那么不论是5度 还是负100度都属于冷这个类,而不属于热这个类的。而模糊集里的隶属度是一个取值在[0 1]区间内的数。一个样本同时属于所有的类,但是通过隶属度的大小来区分其差异。比如5度,可能属于冷这类的隶属度值为0.7,而属于热这个类的值为0.3。这样做就比较合理,硬聚类也可以看做模糊聚类的一个特例。你说的动态模糊分析法我在文献里很少见到好像并不主流,似乎没有专门的这样一种典型聚类算法,可能是个别人根据自己需要设计并命名的一种针对模糊聚类的改进方法,这个不好说了就。我见过有把每个不同样本加权的,权值自己确定,这样就冠以“动态"二字,这都是作者自己起的。也有别的也叫”动态“的,可能也不一样,似乎都是个别人自己提出的。至于文献,你可以到中国知网搜索博士或者硕士毕业论文,有关模糊聚类为题目的,在第一章引言里面必然会有详细的介绍,或者联系我,我就是做这方面的。希望能对你有所帮助,给点分吧,打的挺累的。

阅读全文

与基于模糊聚类分析方法的股票投资风险研究相关的资料

热点内容
上海私募基金是全国第一吗 浏览:361
外包外汇 浏览:117
帮朋友贷款我需要什么证明 浏览:443
黄山贷款找谁 浏览:64
大连南方财富贵金属经营有限公司 浏览:41
信托每年收益 浏览:350
怎么查基金上不上会 浏览:877
购买门市可以贷款吗 浏览:837
阿狸巴巴股票 浏览:815
东融资产上市 浏览:716
上海新基金 浏览:750
股票价格灰色是什么 浏览:331
基金如何卖超过七日的部分 浏览:129
云和融资 浏览:510
中航投资下属子公司 浏览:826
创业投融资平台 浏览:364
外汇市场分层 浏览:800
信托返本 浏览:684
信托合同纠纷 浏览:613
世界有什么股票公司 浏览:941