⑴ 标的股票价格为31,执行价格为30,无风险年利率为10%,三个月期欧式看涨期权价为3,
根据买卖平价公式C(t)+K*exp[-r(T-t)]=P(t)+S(t)
其中其中C为看欧式张期权价格,K是执行价格,P是看内欧式跌期权价格,S是现在的标的资容产价格,r为无风险利率,T为到期日(K按无风险利率折现),两个期权的执行价和其他规定一样
当等式成立的时候就是无套利,不等的时候就存在套利机会
如:上式的等号改为“>”号,则可以在 t 时刻买入一份看跌期权,一份标的资产,同时卖出一份看张期权,并借现金(P+S-C),则 t 时刻的盈亏为0
到T时刻的时候,若S>K,则看涨期权被执行,得到现金K,还还本付息(P+S-C)*exp[r(T-t)], 总盈亏为{C+K*exp[-r(T-t)]-P-S}*exp[r(T-t)]>0
若S<K,则执行看跌期权,得到现金K,还本付息(P+S-C)*exp[r(T-t)],也能获得大于零的收益
所以从总的来看,若平价公式不成立,则存在套利机会
代入数据即可
⑵ 写出欧式看涨期权和看跌期权平价公式并给出证明
C+Ke^(-rT)=P+S0
平价公式是根据无套利原则推导出来的。
构造两个投资组合。
1、看涨期权C,行权价K,距离到期时间T。现金账户Ke^(-rT),利率r,期权到期时恰好变成K。
2、看跌期权P,行权价K,距离到期时间T。标的物股票,现价S0。
看到期时这两个投资组合的情况。
1、股价St大于K:投资组合1,行使看涨期权C,花掉现金账户K,买入标的物股票,股价为St。投资组合2,放弃行使看跌期权,持有股票,股价为St。
2、股价St小于K:投资组合1,放弃行使看涨期权,持有现金K。投资组合2,行使看跌期权,卖出标的物股票,得到现金K
3、股价等于K:两个期权都不行权,投资组合1现金K,投资组合2股票价格等于K。
从上面的讨论我们可以看到,无论股价如何变化,到期时两个投资组合的价值一定相等,所以他们的现值也一定相等。根据无套利原则,两个价值相等的投资组合价格一定相等。所以我们可以得到C+Ke^(-rT)=P+S0。
⑶ 【求解】欧式看涨期权价格 计算题
对于第一问,用股票和无风险贷款来复制。借入B元的无风险利率的贷款,然后购买N单位的股票,使得一年后该组合的价值和期权的价值相等。于是得到方程组:
N*Sup - B*(1+r ) = 5 ; N*Sdown - B*(1+r )= 0。其中Sup、Sdown为上升下降后的股票价格,r为无风险利率8%.于是可以解出N和B,然后N*S - B就是现在期权的价格,S为股票现价。这是根据一价定律,用一个资产组合来完全复制期权的未来现金流,那么现在该组合的价格就是期权的价格。
对于第二问,思路完全一样。只是看跌的时候,股票上涨了期权不行权,到期价值为0;股票下跌了期权行权,到期价值为5。也就是把上边的两个方程右边的数交换一下。
希望对你有所帮助。
⑷ 为什么欧式看涨期权和美式看涨期权价格一样
美式看涨期权的行权机会多过欧式,
所以美式价格应该大于等于欧式
另一方面,
在任意时间点看涨期权的潜在上升空间总是大于潜在下跌空间(因为标的物的价格没有上限),
所以看涨期权的时间价值总是正数,
这样提前执行美式期权就会损失时间价值,
所以美式价格应该小于等于欧式,
因为一旦执行了美式期权,
行权者只能获得内在价值,
而持有欧式期权的人既有内在价值也有时间价值。
所以结论就是等于。
如果是看跌期权的话就不一样了。
⑸ 如何证明欧式看涨期权与看跌期权价格的平价关系
假设两个投资组合
A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无风险债券的到期总收益=X
B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S
投资组合A的价格为:看涨期权价格(C)+无风险债券价格(PV(X))。PV(X)为债券现值。
投资组合B的价格为:看跌期权价格(P)+股票价格S
画图或者假设不同的到期情况可以发现,A、B的收益曲线完全相同。根据无套利原理,拥有相同收益曲线的两个投资组合价格必然相同。所以 C+PV(X)=P+S,变形可得C-P=S-PV(X)
⑹ 什么是欧式看涨期权和欧式看跌期权
欧式期权是指只有在合约到期日才被允许执行的期权。
看涨期权则是估计这个股票会涨,可以在未来以一定的价格买进。看跌期权是估计估计会跌,可以在未来以一定价格卖出。
期权按照交割时间分为欧式和美式。欧式期权就是到了执行日才可执行的。美式是在最后执行日之前任意一天都可以的。
(6)欧式看涨期权价格k扩展阅读:
无论是欧式期权还是美式期权只是名称不同,并无任何地理上的意义。由于美式期权比欧洲式期权具有更大的回旋余地,通常更具有价值,所以,近些年来无论在美国或欧洲,美式期权均成为期权的主流,欧式期权虽也存在但交易量却比美式期权逊色得多。
⑺ 关于欧式看涨期权的一道计算题。求解!
(1)看涨期权定价公式:C=SN(d1)-Kexp[-r(T-t)]Nd(d2)
d1=[ln(S/K)+(r+sigma^2/2)*(T-t)]/(sigma*sqrt(T-t))
d2=d1-sigma*sqrt(T-t)
根据题意,S=30,K=29,r=5%,sigma=25%,T-t=4/12=0.3333
d1=[ln(30/29)+(0.05+0.0625/2)*0.3333]/(0.25*sqrt(0.3333))=0.4225
d2=d1-0.25*sqrt(0.3333)=0.2782
N(d1)=0.6637,N(d2)=0.6096
看涨期权的价格C=30*0.6637-29*0.9835*0.6096=2.5251
(2)看跌期权的定价公式:P=Kexp[-r(T-t)][1-Nd(d2)]-S*[1-N(d1)]
看跌期权的价格P=29*0.9835*0.3904-30*0.3363=1.0467
(3)看涨看跌期权平价关系
C-P=S-Kexp[-r(T-t)]
左边=2.5251-1.0467=1.4784,右边=30-29*0.9835=1.4784
验证表明,平价关系成立。
⑻ 1.试推导出欧式看涨看跌期权的价格平价等式。2.上题中是否存在套利机会,如何套利
1.欧式看涨期权理论价格C=SN(d1)-N(d2)Ke^[-r(T-t)],欧式看跌期权理论价格P=N(-d2)Ke^[-r(T-t)]-SN(-d1),把看涨期权理论价格公式减去看跌期权理论价格公式化简后可得Call-Put平价公式为P+S=C+Ke^[-r(T-t)]
2.根据平价公式依题意可知,K=45,C=8,P=1,e^-r=1/(1+10%),T-t=3/12=1/4,S=50。
(注:题目中没有说明无风险利率是否连续,这是按不连续算的e^-r,由于是3个月期,对于T-t是按年化来计算的。)
把相关数值代入平价公式可得1+50<8+45/(1+10%)^(1/4)=51.94,存在套利机会。
应该通过持有该期权标的物和买入看跌期权,并且卖出看涨期权构成一个套利头寸组合。
3.当股票价格为40元,看跌期权进行行权,获得5元(45-40)的期权价值,扣除1元购入看跌期权成本,实际获利4元;标的物股票亏损10元(50-40);卖出的看涨期权,由于标的物股票价格低于执行价格,故此看涨期权是不会行权的,所以卖出的看涨期权获利为卖出时的期权费8元。综合上述情况,套利利润为4-10+8=2元。
⑼ 求如何证明 欧式看涨期权与看跌期权价格的平价关系
假设两个投资组合
A: 一个看涨期权和一个无风险债券,看涨期权的行权价=X,无风险债券的到期内总收容益=X
B: 一个看跌期权和一股标的股票,看跌期权的行权价格=X,股票价格为S
投资组合A的价格为:看涨期权价格(C)+无风险债券价格(PV(X))。PV(X)为债券现值。
投资组合B的价格为:看跌期权价格(P)+股票价格S
画图或者假设不同的到期情况可以发现,A、B的收益曲线完全相同。根据无套利原理,拥有相同收益曲线的两个投资组合价格必然相同。所以 C+PV(X)=P+S,变形可得C-P=S-PV(X)