『壹』 LNG提炼出的重烃,它都有什么用途!
用于调和汽、柴油。
『贰』 石油和天然气生成之谜
石油和天然气是非常宝贵的矿物资源,人们对石油和天然气生成的认识,是在勘探和开发实践中逐步加深的。石油和天然气的生成问题是自然科学领域中争论最激烈的一个重大研究课题,是石油地质学界的主要研究对象之一。
为了认识石油和天然气是怎样生成的,首先应该了解什么是石油和天然气。
(一)石油和天然气成分探秘
石油可分为天然石油和人造石油两种。天然石油是从油气田里直接开采出来的,如克拉玛依油田、塔河油田、大庆油田等开采出来的石油。人造石油是从油页岩或煤干馏出来的,如东北抚顺和广东茂名等地利用油页岩干馏得到的石油。石油在提炼以前称为原油。从原油中可以提炼出汽油、煤油、柴油、润滑油以及其他一系列的石油化工产品,如乙烯、化肥等。
石油有哪些特性呢?从外观上看,石油的颜色多种多样,有的油田的石油是棕黑色的,像烟袋油,如克拉玛依油田的;有的呈黑绿色,如独山子油田的;还有浅棕黄色,如柯克亚油田的;有些油气田采出来的石油无色透明,像清水一样,如巴楚地区的巴什托凝析油气田和呼图壁凝析油气田的。
闻气味也是认识石油的一种方法。石油中含有汽油和煤油,所以可以闻到特殊的煤油味。有一些石油中含有硫化氢,闻起来有一股臭鸡蛋味。还有一些石油含有较多的芳香烃(一种有机化合物),闻起来又特别香。
石油比水轻,又不溶于水。石油的相对密度(在20℃时,与同体积的水相比)介于0.75~1.0之间,相对密度小于0.9的石油称为轻质石油,相对密度大于0.9的称为重质石油。由于石油比水轻,又不溶于水,所以当石油遇到水时,就漂浮在水面上,呈现出五颜六色的油膜。
石油不像水那样容易流动,具有一定的黏性,黏度越大,越不容易流动。石油的黏度随着温度的增高而减小,有些石油在地面看起来很稠,很不容易流动,但是在地下比较高的压力和温度条件下,它的流动性可能是很好的。
以上几点突出的物理性质,可以帮助我们去认识石油。物理性质是化学组成的反映,因此,要认识石油还必须认识它的实质,即它的化学组成。
有许多有用矿产的化学组成是比较简单的,如煤,主要是由碳(C)组成的。石油的化学组成比较复杂,它既不是由单一的元素组成的,也不是由简单的化合物组成的,而是由多种元素组成的多种化合物的混合物。
石油是由碳(C)、氢(H)和少量的氧(O)、硫(S)、氮(N)等元素构成的。其中两种主要元素碳和氢构成碳氢化合物,化学上称为烃,这是取碳字中的“火”字和氢字中的“”而构成的。烃类是一种有机化合物,它占石油成分的97%~99%,其余的成分是含氧的化合物、含硫的化合物和含氮的化合物。这些化合物只占1%~3%。在自然界里,大多数含碳化合物中,除一氧化碳、二氧化碳和碳酸盐以外,都是有机化合物。所以说,石油是一种复杂的有机化合物的大家族。
石油中的碳氢化合物,按照结构的不同分为三类:
(1)烷族碳氢化合物:它是通式为CnH2n+2的饱和烃,“n”表示碳的个数。在室温下,C1—C4为气态,C5—C16是液态,是石油的主要成分;C16以上的为固态,悬浮在石油中(表4-3-1)。
探索新疆地质矿产资源奥秘
表4-3-1 石油中的部分碳氢化合物
(2)环烷族碳氢化合物:通式为CnH2n,属饱和烃。碳元素呈环状结构,以五元环和六元环最多。
探索新疆地质矿产资源奥秘
在多数情况下,环烷族烃占石油成分的主要部分。
(3)芳香族碳氢化合物:通式为CnH2n-6,属不饱和烃,包括苯、甲苯和二甲苯等。芳香烃具有强烈的芳香气味,但是在大多数情况下,它在石油中的比例比较小。
还有其他不饱和的碳氢化合物混杂在石油中,如烯烃类(表4-3-1),但是数量很少,对石油的成分影响不大。
不同油田的石油,所含各类碳氢化合物的比例是不同的。新疆大多数油田的石油含烷烃较多,其次是环烷烃,芳香烃较少,属于烷族-环烷族石油。
组成石油的碳氢化合物,在一般情况下,有一部分呈气体状态。在油田里都含有一定数量的这种气体,称为天然气,或称油田气。
实际上,石油和天然气是个“双胞胎”,它们的生成物质和生成环境基本上是一致的。因此,当我们了解了石油的特性以后,还应该了解天然气的特性。
天然气的成分也不是单一的,是各种气体的混合物,其中主要的气体是气态碳氢化合物,其次有少量的碳酸气〔(即:二氧化碳(CO2)、一氧化碳(CO)〕、氮气(N2)、氢气(H2)、氦气(He)和氩气(Ar)等,有时还有少量硫化氢气(H2S)。
天然气中的气态碳氢化合物主要是烷烃类,而且以甲烷最多,一般占气体成分的80%~90%,另外还有少量的乙烷(C2H6)、丙烷(C3H8)和丁烷(C4H10)等。在气态的烷烃中,乙烷以上的烃类称为“重烃”。不同的油气田的天然气中,重烃的含量是不同的(表4-3-2),重烃含量较高的天然气称为“湿气”或称富气。含有很少量重烃的天然气称为“干气”或称贫气。干气常以气田的形式出现,如塔里木盆地的克拉2气田。油田中的天然气多为湿气。
表4-3-2 天然气、煤田气和沼气中各种气体成分含量百分比
天然气作为燃料已广泛用于国民经济当中,已利用天然气炼钢、发电等。在人口集中的城镇利用天然气取代煤炭作为清洁能源供居民燃烧使用。新疆的乌鲁木齐、克拉玛依、喀什、和田、阿克苏、库尔勒、石河子和呼图壁等城镇居民就已使用上了这种清洁能源,大大地改善了空气质量,保护了人类的生存环境。
(二)石油和天然气生成探秘
由于石油和天然气的成分比较复杂,而且它们又能流动,现在发现的油气矿藏往往并不是它们的出生地,这与煤、铁等固体矿藏显著不同。因此,长期以来,对于石油和天然气的生成问题,有过许多激烈的争论,直到现在对这个问题还在继续实践和认识。
从18世纪70年代到现在230多年来,人们对石油和天然气的生成问题,先后提出了几十种假说。这些假说中,大多数是根据实验室里试验、天文观测和勘探开发油气田的实践。把许多种假说归结起来,可分为两大学派,即:无机生成说和有机生成说。
1.无机生成的学说
无机生成说是根据实验室内由无机物制成甲烷、乙烷、乙炔及苯等类碳氢化合物,认为石油和天然气是由无机物变成的。在石油无机生成说中,又有碳化物说、宇宙说及岩浆说。现简介如下:
(1)碳化物说:俄国著名化学家Д·И·门捷列夫在1876年提出。他认为在地球形成时期,温度很高,使碳和铁变为液态,互相作用而成碳化铁,并保存在地球深处。后来地表水沿地壳裂缝向下渗透,与碳化铁作用产生碳氢化合物,后来又沿着裂隙上升到地壳比较冷却的部分,冷凝下来形成石油,并在孔隙性岩层中聚集而成油气矿藏。
门捷列夫还指出:在“山脊”上升时期是地球成油最有利的时期,因为这时容易造成裂隙,成为地表水向下渗透和油气向上运移的通道。他以当时大多数地表油气苗显示和油田都位于山脊附近的事实来论证自己的观点。
(2)宇宙说:俄国天文学家В·Д·索可洛夫在1889年提出。当时天文学获得了巨大成就,光谱分析证明彗星头部气圈中含有碳氢化合物,在其他行星(木星、土星等)大气中也含有碳氢化合物,有的直接存在着甲烷气体。
宇宙说主张在地球呈熔融状态时,碳氢化合物就包含在它的气圈中,随着地球冷凝,碳氢化合物被冷凝岩浆吸收,最后凝结于地壳中而成石油。
由于碳化物说和宇宙说所依据的是由无机物制成简单碳氢化合物的实验,至今未找到任何实地证据说明在自然界中也发生过这样的过程。所以,20世纪以来,上述的石油无机生成学说,逐渐被人们忘记。但是,到20世纪50年代,苏联地质界又再次兴起无机生成思潮,就是岩浆说。
(3)岩浆说:1949年,苏联著名的地质学家Н·А·库得梁采夫提出了石油起源岩浆说。他认为石油的生成是同基性岩浆冷却时碳氢化合物的合成有关,这个过程是在高压条件下完成的,因而可以促使不饱和碳氢化合物聚合而成饱和碳氢化合物。他还指出,因岩浆中形成石油的过程在不断进行着,古老的油气通过扩散作用早已消失。所以,所有的油藏都是年轻的油藏。并且依靠石油才在地球上产生了生物,石油中含有生物所需要的一切元素。因此,石油不是来自有机物质,恰好相反,有机物质却是来源于石油。
2.有机生成的学说
石油有机生成说也有早期成油说和晚期成油说两种认识。
(1)石油有机生成早期成油说:早在1763年,俄国的化学家М·В·罗蒙诺索夫就提出了石油是煤在地热作用下干馏产生的有机生成说。今天用它来解释欧洲北海的油气田仍然有效。但实践表明,很多地区的油气田并不与煤共生。因此,人们开始把注意力转向了混在沉积岩中的、在数量上比煤大得多但却又分散的有机物质。经过多年对沉积岩中分散有机物质的野外观察和实验室研究,从地质、地球化学各个方面进行总结,逐渐形成了石油是由沉积岩中分散有机质生成的思想。20世纪40~50年代,石油地质工作者普遍认为:石油烃类是沉积岩中的分散有机质在成岩作用早期转变而成的,这就是有机生成早期成油说。
早期成油说的论据有:①世界上发现的2万多个油气田,99.9%都分布在沉积岩中,而且与富含有机质的细粒沉积物相伴随。②石油普遍具有旋光性,旋光性只有生物有机质才具有。③石油中的某些化合物明显来自动植物机体,如卟琳化合物、姥鲛烷、植烷等异戊二烯类化合物及甾烷类等。④石油的碳同位素组成与动植物或生物成因的物质相似,而与非生物成因的物质差别较大。⑤实验证明,动植物机体的结构,在适当条件下,能生成一定数量的烃。⑥现代沉积和古代沉积中都有烃类物质存在。⑦在实验中,用细菌作用于有机质,得到了少量比甲烷重的烃。
早期有机生成说在与无机生成说的斗争中,逐渐建立起从生油物质、生油母岩、成油环境到转化条件等一整套成油理论,为石油有机生成说打下了坚实的基础。
(2)石油有机生成晚期成油说:1963年,Р·Н·阿贝尔松提出,石油是沉积物(岩)中不溶有机质,即称之为干酪根(Kerogen)的一种物质,在成岩作用晚期,经过热解生成的。这个学说认为,大量生油的时期,已经是含有大量有机质的沉积物处于成岩作用的晚期阶段,同时生油原始物质主要是在岩石中。因此,人们常把这个学说简称为“晚期成油说”或“干酪根成油说”。
晚期成油说认为:①根据原始有机质(干酪根)类型,生成石油和天然气的母源分为三类:Ⅰ类,腐泥型干酪根,它是富含类脂物和蛋白质的分解产物,生成液态石油烃的潜力高,是生成石油的主要母源物质;Ⅱ类,腐殖型干酪根,生成液态石油烃的潜力低,是生成天然气的主要母源物质;Ⅲ类,过渡型干酪根,介于上述二类之间,其生油或生气能力取决于它与腐泥型或腐殖型的接近程度。②有机质转化成石油和天然气的过程,要经过一个物理化学作用。有机体死亡之后沉入水底堆积起来或从大陆搬运到湖泊、海洋水底堆积起来,在搬运和沉积过程中,水中的游离氧和氧化剂(NO2-、SO42-等)大量地氧化有机体的残骸,使之成为CO2和H2O。加之,水对有机质中的可溶组分的溶解,只有一部分有机质能够到达水盆底,同矿物质一起堆积起来,只有这部分有机质才能在适宜的环境条件下开始向烃的方向转化。现已查明,向烃转化过程中,生物化学作用、温度、压力和催化剂都起着重要作用。
(a)生物化学作用:与有机质转化成油气有关的生物化学作用有两类,一是细菌对有机质的分解作用,二是酵素的催化作用。
细菌的种类很多,按其生存条件可分为喜氧细菌、厌氧细菌和通气细菌三种。对油气生成来说,有意义的是厌氧细菌。厌氧细菌在缺氧的条件下,对有机质进行分解,产生稳定的分散有机质。在其他因素作用下,有机质可进一步向石油转化。
酵素,是动植物和微生物产生的一种高分子胶体物质,是一种有机催化剂。它在有机质改造中,可以加速有机质的分解,在有机质向油转化过程中起着催化作用。
(b)温度:无论是实验室还是对含油气盆地沉积岩剖面研究,都指出沉积岩中的有机质,在加热温度达400℃~500℃就能得到石油中的烷烃、环烷烃以及少量芳香烃及烯烃。因此,温度对有机质转化成油有决定性影响,只有当温度增加到一定门限值(成熟温度),有机质才能大量转化成石油。由于这个原因,凡地温梯度较高的盆地,一般地说,油气就比较丰富,如塔里木盆地。
(c)压力:究竟在多大的压力下,有机质才能生成石油和天然气?至今还没有得到正确的答案。不过实验证明,中温高压有利于石油的生成,如,大约50℃这样的中等温度,在30~70兆帕压力时,有机质就可以产生出石油烃。实验还证明,在1500~3000米深处,是有机质向石油转化的主要阶段,即主要生油期。
从一般化学反应来看,单纯压力作用,不利于低分子烃(尤其是气态烃)生成,而有利于液态烃的保存,使之不易于甲烷化。故压力对生成油气作用的影响,不是表现在数量方面,而是主要表现在质量方面。
『叁』 重烃的增值税税率是多少
《增值暂行条例》(中华人民共和国国务院令)(第538号):第二条增值税税率:(一)纳税人销售或者进口货物,除本条第(二)项、第(三)项规定外,税率为17%.(二)纳税人销售或者进口下列货物,税率为13%:1.粮食、食用植物油;2.自来水、暖气、冷气、热水、煤气、石油液化气、天然气、沼气、居民用煤炭制品;重烃是石油的主要组成部分,如果属于石油液化气、天然气的,按照13%税率征收。
『肆』 重烃油,,都有什么加到柴油里,让柴油密度变小。
搜一下:重烃油,,都有什么??加到柴油里,让柴油密度变小。
『伍』 石油和天然气矿床
由于石油和天然气具有燃烧充分、发热量高、比重小、流动性、易于开采、运输方便和成本低廉等优点,近年来的开采量和需求量迅猛增长。据统计,在工业较发达国家的能源消费结构中,煤炭的地位由90%跌至30%左右,而石油、天然气则上升到65%~75%。
石油和天然气还是合成纤维、塑料、合成橡胶、化肥、农药等化学工业最主要的原料。石油和天然气的化工产品,目前约有50余种。从石油和天然气中尚可提取大量的硫,有些还可提取氦、氩、汞。因此,人称它们为“工业的血液”。
一、石油的基本特征和成因
1.石油的组成和性质
石油主要是由多种碳氢化合物构成的混合物。纯粹由碳和氢两种元素组成的化合物,称为碳氢化合物(烃)。烃可以分成几个族。石油主要是烷烃(CnH2n+2)、环烷烃(CnH2n)、芳香烃(CnH2n-6)所组成。此外,石油中还含有少量的非烃类,如硫、氮、氧等,但含量很低(表10-1)。非烃组成对石油的质量影响很大。原油中含硫<0.5%为低硫原油;含硫>0.5%为高硫原油。在石油灰分中还含有30多种微量元素,其中以钒和镍含量最高。
表10-1 石油和天然气的化学组成
石油是有机化合物的混合物,因而没有固定的物理常数,多为墨绿色、深褐色至黑色,具明显的气味,轻质石油有芳香味,浓而黑的石油有沥青味,少数含硫、氮多的有恶臭味,密度一般在0.75~1.00 g/cm3之间;石油的粘度主要取决于其化学组成,烷烃和溶解气的含量高则粘度小,环烷烃含量高则粘度大;石油难溶于水,却易溶于许多有机溶剂;在紫外光照射下显出荧光,这可作为确定岩石是否含油的标志。此外,石油的导电性差,是电阻率测井中用来寻找油藏确定油层的依据。
2.石油的形成
关于石油的成因,长期以来曾有无机说与有机说的争论,现在已普遍承认石油是有机成因的。那么生油的原始物质是什么?人们曾指出石油直接起源于活的有机体,并认为细菌是促使烃类化合物转变为更多类石油烃的主要营力。海洋生物,特别是藻类被认为是最佳的生油物质。而对沉积岩的研究则表明,各种沉积物中均不同程度的含有机质:泥质岩平均为2.1%,碳酸盐岩中为0.2%,砂岩中为0.05%。目前,已能从沉积有机质中提取氨基酸、类脂物、糖类物质以及烃类和沥青组分,但它们只占有机质中很少的一部分,而绝大部分是高分子残渣——干洛根。干洛根指存在于沉积岩和沉积物中不溶解于有机溶剂的有机质。干洛根可从脂肪、碳水化合物、蛋白质及腐殖酸中产生。1962年亨特首次在隔氧条件下加热干洛根获得烃类化合物。尔后提出了干洛根热降解成油的观点,这一认识得到广泛的重视和认同。
石油的生成取决于:①大量的有机物质来源;②有利于有机质保存的还原环境;③促使有机质向石油转化所需要的合适温度、压力以及细菌、放射性作用等。当有机质在埋深过程中由于温度的升高达到一定程度时,就会有大量烃类产生;因此,长期稳定下沉的深坳陷是形成石油的最主要地质构造条件。只有当沉积物下沉到相当大的深度,才能保证温度和压力升高到足以使有机物热解转化成为石油。
二、天然气的基本特征和成因
广义的天然气泛指存在于自然界中的一切气体,狭义的天然气则指分布于沉积圈中或地壳上部的各种天然气,其主体是聚集成气藏的烃气。人们一般所指的天然气,即是那些与石油有成因联系的烃类为主的气藏中的天然气。
1.天然气的化学组成
气藏中天然气的主要成分是烃类(表 10-1),通常甲烷为主,次为重烃气,其中以C2H6、C3H8最常见。非烃气在大多数气藏中都为次要组分,常见为N2、CO2、H2S、CO、SO2、H2、Hg以及微量或痕量的惰性气体等。有时这些非烃气也可以成为天然气的主要组成,并形成非烃气藏,如我国广东三水盆地的CO2气田,CO2高达99.53%。
2.天然气的成因类型
(1)生物成因气:亦称菌解气,是指在浅层低温的还原条件下的生物化学作用带内,由厌氧细菌等微生物分解有机质而形成的天然气(甲烷气)。通过现代海洋沉积物中的微生物对有机质的矿化作用研究表明,有机质形成甲烷是细菌的代谢作用过程。在喜氧细菌的代谢作用中,游离氧很快被消耗,形成缺氧环境。在厌氧细菌生活的环境中,细菌的发酵作用明显加强,生成甲烷的速率加大。因此,富含腐殖型和混合型有机质的浅海和海陆交替带的硫酸盐还原作用带以下深度,是生物气大量生成的有利环境。生物气在天然气工业中具有重要地位,占世界天然气总探明储量的20%以上。
(2)与成油作用有关的天然气:指分散的有机质(干洛根)在热降解成油过程中,与石油一起形成的甲烷为主的天然气,也包括液态烃在过成熟阶段热裂解形成的甲烷气。由于这种天然气在成因上和分布上与石油关系密切,又称为油型气。油型气通常有三类:①油田气,指溶解于原油中的气体和从原油中析出呈游离状态的气体;②气田气,是一种与石油没有伴生关系的甲烷气,产于与石油大体相同的构造中;③凝析气,是一种含有凝析物(油)的气体,这种气体冒出地面后,由于温度和压力的下降,会析出液态凝析物,它是一种轻质的、淡黄色液态烃,称为凝析油。
(3)煤层气:也称煤型气,是指煤在煤化过程中变质作用阶段所形成的天然气,是赋存于煤层中的自生自储式非常规天然气。煤矿开采过程中不时涌出或爆炸的瓦斯,就是煤层气。在实际应用中,有人也称之为煤成气。从真正意义上讲,煤成气是指煤或煤系有机质在天然热力作用下生成的热解气,多聚集于煤层之外其他储层中。
煤层气作为一种新兴、洁净、高效的能源,已被世界上许多国家开发利用。世界煤炭资源非常丰富,因此煤层气潜量巨大。就目前所知,在世界发现的26个最大气田中,有16个是煤层气气田,其最终探明储量占26个最大气田总探明储量的72.2%。煤层气将成为今后世界上开发的最主要能源矿产之一。
近年来,随着洁净煤技术热潮在全球范围内的兴起,煤炭地下气化技术得到了迅猛发展。煤炭地下气化就是将处于地下的煤炭进行有控制的燃烧,通过对煤的热化学作用而产生可燃气体的过程。这种人为的使煤产生的可燃气不属于天然气范畴,但对煤的洁净和充分利用以及替代天然气资源具有变革性意义。
(4)天然气水合物:天然气水合物是近年来发现的一种新能源,预计40年或50年后将大部分替代行将枯竭的石油和天然气。天然气水合物是由碳氢气体(主要是甲烷气)与水分子组成的一种冰状固体物质,在低温(<10t)、高压(>10 MPa)下由有机质形成并储存于深海底之下的浅层沉积物孔隙内,大陆上永久冻土带也有大量天然气水合物。据估算,其资源量为(1.8~2.1)×1016m3,相当于全球石油、天然气和煤总资源量的两倍,其总量之大足以成为未来相当长时期内世界开发利用的潜在能源。
(5)无机成因气:泛指在沉积作用过程中捕获的气体、岩石受热分解以及遭受变质后的脱气、岩浆析出气等各种无机成因的天然气。形成气藏的主要是CO2气。
三、油气藏和油气显示
1.油气藏的形成
油气藏是油气聚集的最基本单位。它的形成首先要有产生大量油气的生油(气)岩(烃源岩);其次要有具渗透性的储集岩,以容纳从生油岩中运移出来的油气;第三要有储集岩与非渗透性盖层或其他遮挡因素所组成的圈闭,以捕捉和聚集油气。
(1)生油(气)岩:指可能产生或已产生石油(气)的岩石。由生油(气)岩组成的地层叫生油(气)层。在一定地质时期内所形成的生油(气)岩与非生油(气)岩的岩性组合,叫生油(气)岩系。生油(气)岩都是富含有机质的细粒沉积岩,以暗色的泥质岩和泥晶碳酸盐岩类为主。世界上所有大型油气田差不多都和泥岩、泥灰岩密切相关。在实际工作中,要准确地鉴定或定量地评价生油(气)岩,通常要进行有机质丰度、有机质类型、有机质成熟度指标及有机质转化指标等方面的测试和研究。
(2)储集岩:指能够储存石油和天然气,又能输出油气的岩石。由储集岩构成的地层,称储集层或储层。储集岩必须同时具备良好的孔隙性和渗透性。砂岩的孔隙度高,并且渗透性能好,因而是良好的储集层。其次为石灰岩和白云岩。裂隙发育的页岩、变质岩和火山岩也可以作为储集层。目前世界上已发现的油气,99%以上储集在沉积岩储层中,其中又以碎屑岩和碳酸盐岩储集层为主。碎屑岩储集层包括砂砾岩、砂岩、粉砂岩及未胶结或胶结松散的砂层;碳酸盐岩储集层的岩石类型主要为粒屑灰岩、生物骨架灰岩等。
(3)盖层:指位于储集层之上,能对储集层起封隔作用、阻止油气向上逸散的岩层。组成盖层的岩石为不具渗透性的岩石,如泥岩、页岩、蒸发岩。其中,泥岩和页岩盖层常与碎屑岩储集层伴生,而蒸发岩盖层则多与碳酸盐岩储集层并存。
(4)油气的运移:有机物质转变成油气只是提供了形成油气藏的物质来源,只有使分散状态的油气经过运移而大量聚集后才能形成油气藏。油气的运移就是油气在地壳中因自然因素引起的移动。引起油气运移的动力因素有:上覆沉积负荷不断增加,导致压实作用而形成流体运动;由于埋藏深度增加,在温度升高的热力作用下,流体膨胀造成流体运动;其他动力因素,如粘土矿物脱水作用、毛细管作用、水动力作用等。油气从生油(气)岩中向外运移的过程,称为初次运移。油气脱离生油(气)岩后在储集层内运移,称二次运移。只有当储集层具有一定的倾角以及构造运动形成圈闭时,储集层中的油气和水才能在动压力、重力及水力等因素作用下继续向岩层上倾方向运动,直至遇到能捕获油气的圈闭,油气聚集起来形成油气藏。
(5)圈闭和油气藏:圈闭亦称油(气)捕,指能阻止油气在储集层中继续运移并将其聚集起来的空间场所。圈闭必须具备储集层、盖层和一定的遮挡(或封闭)条件。根据控制圈闭形成的地质因素,圈闭可分为3种基本类型(图10-4):Ⅰ类为构造圈闭,为储集层在褶皱和断层作用下形成的圈闭,包括背斜圈闭、断层圈闭、裂缝性圈闭、刺穿构造圈闭;Ⅱ类为岩性圈闭,为储集层岩性横向变化造成的圈闭,包括透镜体圈闭、岩性倾向尖灭圈闭、生物礁圈闭;Ⅲ类为地层圈闭,是一组不渗透性岩层,不整合覆盖在具有储集性岩石上面造成的圈闭,包括不整合圈闭、潜伏剥蚀突起圈闭。通常最重要的圈闭是背斜构造,油气常聚集在背斜的顶部。
图10-4 圈闭的类型及油气藏类型示意图
聚集了一定数量油和气的圈闭,称油气藏。如果圈闭中仅聚集了石油,称油藏;只聚集了天然气,称为气藏。储量可供工业开采的油气藏,称为工业油气藏。一个地区,只有具备生油层、储油层、盖层、圈闭等基本条件,并且油气经运移进入圈闭聚集,才会形成油气藏。
2.油气显示
油气显示是指石油、天然气以及石油衍生物在地表的天然露头,有时也包括钻井岩芯或矿井巷道中见到的含油气迹象。其中,石油衍生物是指由石油演变而来的一系列有机矿物。常见的宏观直接油气显示有:由地下沿断层或其他通道向上运移而透出地表的液态原油,称为油苗,随地下水渗出或随泥浆涌出,呈薄膜状浮于其表面者,称为油膜;气苗通常在水中或泥浆中呈连续或断续的气泡冒出,有时从土壤或岩石中直接溢出,并可嗅到特殊的气味,甚至听到嗤嗤的响声;被液态原油浸染的岩石通常为砂岩,含油砂岩分为油砂和油斑,油砂指全部被原油所浸润的砂岩,油斑则指局部被原油浸染的砂岩;地下高压的天然气挟带地下水、泥砂、岩块喷出地表,所携带的泥砂等固体物质在溢出口形成锥状堆积体,即泥火山,实际上,泥火山是气苗的一种特殊形式;地表岩石含有石油沥青矿物(地蜡和沥青)属于固体显示。油气显示对油气藏的调查勘探工作具有重要意义。
四、油气田和含油气盆地
在地表同一块面积下,油气藏类型和数目可以是单一的,也可以是多组合的,即存在着不同圈闭类型或同种圈闭的多个油气藏。一般把受单一地质因素控制的同一面积内油气藏的总和称油气田。如果在同一面积下,圈闭中只聚集了石油或天然气,则称为油田或气田。
含油气盆地指有过油气生成,并运移聚集成为工业油气田的沉积盆地。含油气盆地在其地质发展演化的某一时期为沉积坳陷区,在同一盆地内或若干生油期,有相似的油气聚集过程。沉积盆地的基底可以是古老变质岩系或老的沉积岩层,其上有含油沉积盖层。在横向上常表现有分割性,隆起和凹陷相间。凹陷区往往是有利的生油环境,而隆起区则对油气聚集非常有利。
发现和勘探油气田首先要对该地区的含油气远景作出正确的评价,评价的内容主要有:①区域构造条件,含油气盆地的内部构造特征;②区域地层关系、生油层、储油层、盖层的组合条件;③油气圈闭条件,尤其是构造圈闭类型和特征;④油气藏的保存条件;⑤油气显示。
『陆』 如何进行气源对比及参数选择
1)天然气与气源岩的轻烃对比该方法是利用轻烃中C6—C7之间链烷烃、环烷烃和芳香烃间的相对含量具有有机质成因分类的指示意义。因此在气源岩的轻烃分析中,不仅仅是分析气源岩中游离的残余烃,同时还要对本盆地不同烃源岩进行不同温度热模拟实验以求得不同演化阶段的轻烃产物组成。最终通过各种气源岩的热生烃实验综合探讨原始有机质的类型、沉积环境和热演化程度等各种因素与轻烃产物组成的关系。在实际的对比中我们采用反映各种因素总效果的方法,对凝析气C6—C7范围的链烷烃、环烷烃和芳香烃三大类有机化合物进行统计,根据百分含量与有机质类型,确定出三种基本成因类型的参照指标:①腐泥型,链烷烃含量大于60%;②腐殖型和煤型,链烷烃小于40%,其中煤型的芳香烃含量大于50%;③偏腐殖型,链烷烃含量为40%~60%。
2)天然气稳定碳同位素对比由于天然气的主要成分是甲烷等气态烃,以前受分析检测水平的限制,可供研究的化合物较少,因此气态烃的稳定碳同位素一直是判别天然气成因类型的主要方法。根据大量天然气气样的碳同位素分析结果的统计,天然气基本成因类型划分见表1—15。
表1—15 天然气成因类型划分表3)生物标志物气源对比天然气生物标志化合物地球化学研究是随着检测技术的进步而发展起来的。众所周知,天然气主要是C7以下轻烃,其中所含重烃极少。目前随着制样装置的改进和检测灵敏度的提高,已可以检测出天然气中的生物标志化合物。这样气源岩的直接对比就成为可能。大量的分析结果表明,天然气中检测出来的生物标志物和原油及烃源岩中检测出来的种类基本相同。而与相关气源岩生物标志物具有非常相似的特征。
同油—源对比一样,气和烃源岩生物标志物地球化学对比最重要的是要强调各个盆地建立自己适用的指标,为此要对各层系可能的烃源岩进行系统的、全面的地球化学分析归纳,综合各种生物标志物的地球化学特征,建立一套该盆地油气源对比的标准。其对比步骤和方法同油—源对比完全一致。
由于气的运移非常活跃,运移距离可能比油远得多,因此气源岩的确定也就比油源岩要复杂得多,因此必须要综合利用多种方法进行对比,最后结合盆地本身的地质条件和演化发展史才能最终确定气源岩。
『柒』 脱除天然气中重烃的原理
应该可以根据天然气中不同组分的沸点不同,进行整流分离
『捌』 天然气液化重烃如何脱离
因为根据国家规定,液化天然气中甲烷的含量在80%-85%,对乙烷、丙烷等重烃的含量也有要求;并且这些重烃影响液化天然气的热值等等因素。
1重烃脱除的必要性与常用方法1.1重烃脱除的必要性重烃(C5以上)由于熔沸点低,在天然气液化工程中,先于甲烷液化,如果处理不干净,会先凝固,甚至造成冰堵,堵塞管道,造成事故[1]。因此,必须在冷凝之前,或者在冷凝过程中将其分离脱除。1.2常用重烃脱除方法重烃脱除一般都采用物理方法,即利用其物理特性加以脱除,如熔沸点的不同,溶解性的差异等等。常用方法主要有以下几种[2]:(1)活性炭吸附法[3]。活性炭吸附可分为3个阶段,吸附,加热再生及冷却。常以2台或3台为一组。采用2台一组,工作流程如下:第一台吸附时,另一台加热再生及冷却;采用3台一组,则为一台吸附,第二台加热再生,另一台冷却。3台一组相比2台一组具有可以对吸附再生后冷却过程中塔的热量加以利用的优点。再生气(用于活性炭再生的气体)在加热前先通过处于冷却状态的吸收塔,一方面预热了气体,另一方面冷却了吸附塔。(2)异戊烷溶解法[4]。异戊烷等洗涤液,与天然气接触,吸收里面的重烃。也有利用冷箱中液化的重烃作为洗涤液,不过由于原料气中物料组分可能并不稳定等原因,仍需要异戊烷来调节等。(3)深冷分离法。利用熔沸点的不同,进行气液分离。
『玖』 请问重烃汽油什么地方用
重烃主要用途具体如下:
1.调和非标汽油,可降低闪点和凝固点。且价格便宜,显著降低成本。
2.调和燃料油,对于某些凝固点高,流动性能差的油,添加重烃可降低凝固点,增强流动性能,改善燃烧性能。
3.调和烧火油,可与轮胎油等其他废油调和烧火油。
4.可进行再加工,将重烃精馏得到重组分和轻组分。轻组分可调汽油,重组分可调柴油和煤油。
『拾』 天然气的化学组成
气(油)藏中天然气的主要成分是烃类。通常以甲烷占优势,并有数量不等的重烃气(C+2)。在某些石油伴生气(气顶气和油溶气)中,重烃气含量可以超过甲烷。非烃气在绝大多数气藏气中为次要成分,常见的非烃气有N2、CO2、H2S、CO、SO2、H2、Hg等的蒸气,以及痕量到微量的惰性气体如氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)、氡(Rn)等。在某些气藏中非烃气体也可以成为主要成分,如N2气藏、CO2气藏、H2S气藏等。
世界上若干有代表性的地区的油气田中的天然气成分如表1-6所示。
(一)天然气的烃类组成
天然气的烃类组成一般以甲烷为主,重烃气次之。重烃气以C2H6和C3H8最为常见;丁烷及更重的烃类较少见。在多数情况下,随碳数增加相对应的烃类含量减少;但在有的气藏中也可见C3H8和C4H10异常高的现象。重烃气中C4—C7除正构烷烃外,有时还有少到微量环烷烃和芳烃。一般根据重烃气的含量将天然气划分为湿气和干气。但不同学者所用的参数、量值及具体的划分方案不尽相同。在天然气地质学上常用重烃气含量5%作为划分干气和湿气的界线,C+2≥5%称为湿气,C+2<5%称为干气。
表1-6 世界上若干地区的油气田中天然气成分简表
(二)天然气的非烃组成
在以烃类为主的天然气聚集中,一般将非烃气体成分视为杂质。但有的非烃气体含量达到一定的品位时也具有很高的经济价值,应予以足够的重视。同时,研究非烃气体,对了解天然气的形成、运移等也有重要意义。因此有必要对天然气中的非烃气体有所认识。
天然气(主要是气藏气)中常见的非烃气有N2、CO2、H2S、H2、CO、SO2、Hg蒸气及惰性气体,有时还有少量含硫、氮、氧的有机化合物。非烃气的含量一般小于10%,但亦有少量气藏非烃气体含量可超过10%,极少数是以非烃气体为主的气藏,如N2气藏,CO2气藏,H2S气藏。