❶ 大智慧的自動收盤有什麼用
自動收盤就是股市收盤後,自動將當天的交易數據全部保存到你的電腦上,以便於盤後分析。如果不做收盤操作的話,無法離線做盤後分析。
大智慧新一代高速行情分析系統除具有一般證券類軟體的通用功能外,主要還具有如下功能:
1、支持多市場
免費接收滬深交易所傳統行情,支持上證所level-2行情、上證所新一代行情、港股實時和延時行情、期貨行情、外匯行情。用戶不需要更換軟體就可以根據自己的需要有選擇的開通需要的市場。
2、靈活的看盤工具
用戶自定義界面和自定義快捷鍵,滿足用戶個性化的習慣和各種交易品種對界面的特殊需求。
3、創新的分析功能
公式編輯器、自編譯技術指標、自編譯交易系統、自編譯條件選股、定位分析、模式匹配分析、預測分析、交易系統評測和成功率測試、任意分析周期、盤中及時預警、時空隧道與模擬K線、分筆成交再現、歷史分時圖系統指示等等。
4、擴展分析功能
擴展資料庫和用戶自定義資料庫。
❷ 外匯隧道交易系統
我認為不是隨機定的,我理解為:在隧道中心距離現價(設為A)。A=55,平一部分,A=89再平一部分......應該不會有行情先到A=377的,一般A是由小變大再由大變小
❸ 維加斯隧道交易法中的過濾器怎麼用
過濾器即為均線,時間周期可以調節,我喜愛使用15日指數均線:1.當均線下穿隧專道,視屬為做空信號;當均線上穿隧道,視為做多信號。2.過濾器上穿或下穿維加斯隧道的價位,可以作為計算止盈,止損價位的依據。3.在上升(或下降)的一波趨勢即將結束的時候,價格下穿(或上穿)過濾器時,視為止贏止損信號。
❹ 寫 外匯交易進階的作者 魏強斌 他是什麼人物
魏強斌,(W.St.Srlocker),供職於Dina Privately-owned Investment&Speculation Fund,任首席策略師,長期從事股票、外匯和黃金的一線交易。長期研習神版經語言程式學(NLP)和教練權技術(CP)在金融交易和相關技能培訓中的運用。在總結艾略特波浪理論、隧道交易理論以及gartley理論的基礎上,結合基本面分析創立了獨特的「三觀」分析方法(triviews arialysis key to trading Way),並將金融易學融入其中。本系列叢書是以本人名義集合帝娜私人基金旗下眾多交易員的經驗和智慧寫成,請讀者不吝斧正。
❺ 找一個可靠一點的外匯公司
找口碑好的
❻ 納米材料與納米技術的現狀、應用、發展趨勢及存在問題是什麼
納米材料是指在三維空間中至少有一維處於納米尺度范圍(1-100nm)或由它們作為基本單元構成的材料,這大約相當於10~100個原子緊密排列在一起的尺度。
「納米復合聚氨酯合成革材料的功能化」和「納米材料在真空絕熱板材中的應用」2項合作項目取得較大進展。具有負離子釋放功能且釋放量可達2000以上的聚氨酯合成革符合生態環保合成革戰略升級方向,日前正待開展中試放大研究。
該產品的成功研發及進一步產業化將可輻射帶動300多家同行企業的產品升級換代。聯盟制備出的納米復合絕熱芯材導熱系數可控制為低達4.4mW/mK。該產品已經在企業實現了中試生產,正在建設規模化生產線。
聯盟將重點研究開發阻燃型高效真空絕熱板及其在建築外牆保溫領域的應用研發和產業化,該技術的開發將進一步促進我國建築節能環保技術水平的提升,帶動安徽納米材料產業進入高速發展期。
復合氧化物一維和零維單晶納米材料
從尺寸大小來說,通常產生物理化學性質顯著變化的細小微粒的尺寸在0.1微米以下(注1米=1000毫米,1毫米=1000微米,1微米=1000納米,1納米=10埃),即100納米以下。因此,顆粒尺寸在1~100納米的微粒稱為超微粒材料,也是一種納米材料。
納米金屬材料是20世紀80年代中期研製成功的,後來相繼問世的有納米半導體薄膜、納米陶瓷、納米瓷性材料和納米生物醫學材料等。
納米級結構材料簡稱為納米材料(nanometer material),是指其結構單元的尺寸介於1納米~100納米范圍之間。由於它的尺寸已經接近電子的相干長度,它的性質因為強相干所帶來的自組織使得性質發生很大變化。並且,其尺度已接近光的波長,加上其具有大表面的特殊效應,因此其所表現的特性,例如熔點、磁性、光學、導熱、導電特性等等,往往不同於該物質在整體狀態時所表現的性質。
納米顆粒材料又稱為超微顆粒材料,由納米粒子(nano particle)組成。納米粒子也叫超微顆粒,一般是指尺寸在1~100nm間的粒子,是處在原子簇和宏觀物體交界的過渡區域,從通常的關於微觀和宏觀的觀點看,這樣的系統既非典型的微觀系統亦非典型的宏觀系統,是一種典型的介觀系統,它具有表面效應、小尺寸效應和宏觀量子隧道效應。當人們將宏觀物體細分成超微顆粒(納米級)後,它將顯示出許多奇異的特性,即它的
稀土納米材料
現狀
納米技術基礎理論研究和新材料開發等應用研究都得到了快速的發展,並且在傳統材料、醫療器材、電子設備、塗料等行業得到了廣泛的應用。在產業化發展方面,除了納米粉體材料在美國、日本、中國等少數幾個國家初步實現規模生產外,納米生物材料、納米電子器件材料、納米醫療診斷材料等產品仍處於開發研製階段。2010年全球納米新材料市場規模達22.3億美元,年增長率為14.8%。今後幾年,隨著各國對納米技術應用研究投入的加大,納米新材料產業化進程將大大加快,市場規模將有放量增長。納米粉體材料中的納米碳酸鈣、納米氧化鋅、納米氧化硅等幾個產品已形成一定的市場規模;納米粉體應用廣泛的納米陶瓷材料、納米紡織材料、納米改性塗料等材料也已開發成功,並初步實現了產業化生產,納米粉體顆粒在醫療診斷制劑、微電子領域的應用正加緊由實驗研究成果向產品產業化生產方向轉移。
光學、熱學、電學、磁學、力學以及化學方面的性質和大塊固體時相比將會有顯著的不同。
納米技術的廣義范圍可包括納米材料技術及納米加工技術、納米測量技術、納米應用技術等方面。其中納米材料技術著重於納米功能性材料的生產(超微粉、鍍膜、納米改性材料等),性能檢測技術(化學組成、微結構、表面形態、物、化、電、磁、熱及光學等性能)。納米加工技術包含精密加工技術(能量束加工等)及掃描探針技術。
納米材料具有一定的獨特性,當物質尺度小到一定程度時,則必須改用量子力學取代傳統力學的觀點來描述它的行為,當粉末粒子尺寸由10微米降至10納米時,其粒徑雖改變為1000倍,但換算成體積時則將有10的9次方倍之巨,所以二者行為上將產生明顯的差異。
納米粒子異於大塊物質的理由是在其表面積相對增大,也就是超微粒子的表面布滿了階梯狀結構,此結構代表具有高表面能的不安定原子。這類原子極易與外來原子吸附鍵結,同時因粒徑縮小而提供了大表面的活性原子。
就熔點來說,納米粉末中由於每一粒子組成原子少,表面原子處於不安定狀態,使其表面晶格震動的振幅較大,所以具有較高的表面能量,造成超微粒子特有的熱性質,也就是造成熔點下降,同時納米粉末將比傳統粉末容易在較低溫度燒結,而成為良好的燒結促進材料。
一般常見的磁性物質均屬多磁區之集合體,當粒子尺寸小至無法區分出其磁區時,即形成單磁區之磁性物質。因此磁性材料製作成超微粒子或薄膜時,將成為優異的磁性材料。
納米粒子的粒徑(10納米~100納米)小於光波的長,因此將與入射光產生復雜的交互作用。金屬在適當的蒸發沉積條件下,可得到易吸收光的黑色金屬超微粒子,稱為金屬黑,這與金屬在真空鍍膜形成高反射率光澤面成強烈對比。納米材料因其光吸收率大的特色,可應用於紅外線感測器材料。
1861年,隨著膠體化學的建立,科學家們開始了對直徑為1~100nm的粒子體系的研究工作。
真正有意識的研究納米粒子可追溯到20世紀30年代的日本的為了軍事需要而開展的「沉煙試驗」,但受到當時試驗水平和條件限制,雖用真空蒸發法製成了世界第一批超微鉛粉,但光吸收性能很不穩定。
到了20世紀60年代人們開始對分立的納米粒子進行研究。1963年,Uyeda用氣體蒸發冷凝法制的了金屬納米微粒,並對其進行了電鏡和電子衍射研究。1984年德國薩爾蘭大學(Saarland University)的Gleiter以及美國阿貢實驗室的Siegal相繼成功地製得了純物質的納米細粉。Gleiter在高真空的條件下將粒子直徑為6nm的鐵粒子原位加壓成形,燒結得到了納米微晶體塊,從而使得納米材料的研究進入了一個新階段。
1990年7月在美國召開了第一屆國際納米科技技術會議(International Conference on Nanoscience&Technology),正式宣布納米材料科學為材料科學的一個新分支。
自20世紀70年代納米顆粒材料問世以來,從研究內涵和特點大致可劃分為三個階段:
第一階段(1990年以前):主要是在實驗室探索用各種方法制備各種材料的納米顆粒粉體或合成塊體,研究評估表徵的方法,探索納米材料不同於普通材料的特殊性能;研究對象一般局限在單一材料和單相材料,國際上通常把這種材料稱為納米晶或納米相材料。
第二階段(1990~1994年):人們關注的熱點是如何利用納米材料已發掘的物理和化學特性,設計納米復合材料,復合材料的合成和物性探索一度成為納米材料研究的主導方向。
第三階段(1994年至今):納米組裝體系、人工組裝合成的納米結構材料體系正在成為納米材料研究的新熱點。國際上把這類材料稱為納米組裝材料體系或者納米尺度的圖案材料。它的基本內涵是以納米顆粒以及它們組成的納米絲、管為基本單元在一維、二維和三維空間組裝排列成具有納米結構的體系。
應用范圍
1、 天然納米材料
海龜在美國佛羅里達州的海邊產卵,但出生後的幼小海龜為了尋找食物,卻要游到英國附近的海域,才能得以生存和長大。最後,長大的海龜還要再回到佛羅里達州的海邊產卵。如此來回約需5~6年,為什麼海龜能夠進行幾萬千米的長途跋涉呢?它們依靠的是頭部內的納米磁性材料,為它們准確無誤地導航。
生物學家在研究鴿子、海豚、蝴蝶、蜜蜂等生物為什麼從來不會迷失方向時,也發現這些生物體內同樣存在著納米材料為它們導航。
2、 納米磁性材料
在實際中應用的納米材料大多數都是人工製造的。納米磁性材料具有十分特別的磁學性質,納米粒子尺寸小,具有單磁疇結構和矯頑力很高的特性,用它製成的磁記錄材料不僅音質、圖像和信噪比好,而且記錄密度比γ-Fe2O3高幾十倍。超順磁的強磁性納米顆粒還可製成磁性液體,用於電聲器件、阻尼器件、旋轉密封及潤滑和選礦等領域。
3、 納米陶瓷材料
傳統的陶瓷材料中晶粒不易滑動,材料質脆,燒結溫度高。納米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上運動,因此,納米陶瓷材料具有極高的強度和高韌性以及良好的延展性,這些特性使納米陶瓷材料可在常溫或次高溫下進行冷加工。如果在次高溫下將納米陶瓷顆粒加工成形,然後做表面退火處理,就可以使納米材料成為一種表面保持常規陶瓷材料的硬度和化學穩定性,而內部仍具有納米材料的延展性的高性能陶瓷。
4、納米感測器
納米二氧化鋯、氧化鎳、二氧化鈦等陶瓷對溫度變化、紅外線以及汽車尾氣都十分敏感。因此,可以用它們製作溫度感測器、紅外線檢測儀和汽車尾氣檢測儀,檢測靈敏度比普通的同類陶瓷感測器高得多。
5、 納米傾斜功能材料
在航天用的氫氧發動機中,燃燒室的內表面需要耐高溫,其外表面要與冷卻劑接觸。因此,內表面要用陶瓷製作,外表面則要用導熱性良好的金屬製作。但塊狀陶瓷和金屬很難結合在一起。如果製作時在金屬和陶瓷之間使其成分逐漸地連續變化,讓金屬和陶瓷「你中有我、我中有你」,最終便能結合在一起形成傾斜功能材料,它的意思是其中的成分變化像一個傾斜的梯子。當用金屬和陶瓷納米顆粒按其含量逐漸變化的要求混合後燒結成形時,就能達到燃燒室內側耐高溫、外側有良好導熱性的要求。
6、納米半導體材料
將硅、砷化鎵等半導體材料製成納米材料,具有許多優異性能。例如,納米半導體中的量子隧道效應使某些半導體材料的電子輸運反常、導電率降低,電導熱系數也隨顆粒尺寸的減小而下降,甚至出現負值。這些特性在大規模集成電路器件、光電器件等領域發揮重要的作用。
利用半導體納米粒子可以制備出光電轉化效率高的、即使在陰雨天也能正常工作的新型太陽能電池。由於納米半導體粒子受光照射時產生的電子和空穴具有較強的還原和氧化能力,因而它能氧化有毒的無機物,降解大多數有機物,最終生成無毒、無味的二氧化碳、水等,所以,可以藉助半導體納米粒子利用太陽能催化分解無機物和有機物。
7、納米催化材料
納米粒子是一種極好的催化劑,這是由於納米粒子尺寸小、表面的體積分數較大、表面的化學鍵狀態和電子態與顆粒內部不同、表面原子配位不全,導致表面的活性位置增加,使它具備了作為催化劑的基本條件。
鎳或銅鋅化合物的納米粒子對某些有機物的氫化反應是極好的催化劑,可替代昂貴的鉑或鈀催化劑。納米鉑黑催化劑可以使乙烯的氧化反應的溫度從600 ℃降低到室溫。
8、 醫療上的應用
血液中紅血球的大小為6 000~9 000 nm,而納米粒子只有幾個納米大小,實際上比紅血球小得多,因此它可以在血液中自由活動。如果把各種有治療作用的納米粒子注入到人體各個部位,便可以檢查病變和進行治療,其作用要比傳統的打針、吃葯的效果好。
碳材料的血液相溶性非常好,21世紀的人工心瓣都是在材料基底上沉積一層熱解碳或類金剛石碳。但是這種沉積工藝比較復雜,而且一般只適用於制備硬材料。
介入性氣囊和導管一般是用高彈性的聚氨酯材料制備,通過把具有高長徑比和純碳原子組成的碳納米管材料引入到高彈性的聚氨酯中,我們可以使這種聚合物材料一方面保持其優異的力學性質和容易加工成型的特性,一方面獲得更好的血液相溶性。
實驗結果顯示,這種納米復合材料引起血液溶血的程度會降低,激活血小板的程度也會降低。
使用納米技術能使葯品生產過程越來越精細,並在納米材料的尺度上直接利用原子、分子的排布製造具有特定功能的葯品。納米材料粒子將使葯物在人體內的傳輸更為方便,用數層納米粒子包裹的智能葯物進入人體後可主動搜索並攻擊癌細胞或修補損傷組織。使用納米技術的新型診斷儀器只需檢測少量血液,就能通過其中的蛋白質和DNA診斷出各種疾病。通過納米粒子的特殊性能在納米粒子表面進行修飾形成一些具有靶向,可控釋放,便於檢測的葯物傳輸載體,為身體的局部病變的治療提供新的方法,為葯物開發開辟了新的方向。
9、納米計算機
世界上第一台電子計算機誕生於1945年,它是由美國的大學和陸軍部共同研製成功的,一共用了18 000個電子管,總重量30 t,佔地面積約170 ㎡,可以算得上一個龐然大物了,可是,它在1 s內只能完成5 000次運算。
經過了半個世紀,由於集成電路技術、微電子學、信息存儲技術、計算機語言和編程技術的發展,使計算機技術有了飛速的發展。今天的計算機小巧玲瓏,可以擺在一張電腦桌上,它的重量只有老祖宗的萬分之一,但運算速度卻遠遠超過了第一代電子計算機。
如果採用納米技術來構築電子計算機的器件,那麼這種未來的計算機將是一種「分子計算機」,其袖珍的程度又遠非今天的計算機可比,而且在節約材料和能源上也將給社會帶來十分可觀的效益。
可以從閱讀硬碟上讀卡機以及存儲容量為晶元上千倍的納米材料級存儲器晶元都已投入生產。計算機在普遍採用納米材料後,可以縮小成為「掌上電腦」。
10、納米碳管
1991年,日本的專家制備出了一種稱為「納米碳管」的材料,它是由許多六邊形的環狀碳原子組合而成的一種管狀物,也可以是由同軸的幾根管狀物套在一起組成的。這種單層和多層的管狀物的兩端常常都是封死的,如圖所示。
這種由碳原子組成的管狀物的直徑和管長的尺寸都是納米量級的,因此被稱為納米碳管。它的抗張強度比鋼高出100倍,導電率比銅還要高。
在空氣中將納米碳管加熱到700 ℃左右,使管子頂部封口處的碳原子因被氧化而破壞,成了開口的納米碳管。然後用電子束將低熔點金屬(如鉛)蒸發後凝聚在開口的納米碳管上,由於虹吸作用,金屬便進入納米碳管中空的芯部。由於納米碳管的直徑極小,因此管內形成的金屬絲也特別細,被稱為納米絲,它產生的尺寸效應是具有超導性。因此,納米碳管加上納米絲可能成為新型的超導體。
納米技術在世界各國尚處於萌芽階段,美、日、德等少數國家,雖然已經初具基礎,但是尚在研究之中,新理論和技術的出現仍然方興未艾。我國已努力趕上先進國家水平,研究隊伍也在日漸壯大。
11、家電
用納米材料製成的納米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外線等作用,可用為作電冰箱、空調外殼里的抗菌除味塑料。
12、環境保護
環境科學領域將出現功能獨特的納米膜。這種膜能夠探測到由化學和生物制劑造成的污染,並能夠對這些制劑進行過濾,從而消除污染。
13、紡織工業
在合成纖維樹脂中添迦納米SiO2、納米ZnO、納米SiO2復配粉體材料,經抽絲、織布,可製成殺菌、防霉、除臭和抗紫外線輻射的內衣和服裝,可用於製造抗菌內衣、用品,可製得滿足國防工業要求的抗紫外線輻射的功能纖維。
14、機械工業
採用納米材料技術對機械關鍵零部件進行金屬表面納米粉塗層處理,可以提高機械設備的耐磨性、硬度和使用壽命。
納米技術(nanotechnology)是用單個原子、分子製造物質的科學技術,研究結構尺寸在0.1至100納米范圍內材料的性質和應用。納米科學技術是以許多現代先進科學技術為基礎的科學技術,它是現代科學(混沌物理、量子力學、介觀物理、分子生物學)和現代技術(計算機技術、微電子和掃描隧道顯微鏡技術、核分析技術)結合的產物,納米科學技術又將引發一系列新的科學技術,例如:納米物理學、納米生物學、納米化學、納米電子學、納米加工技術和納米計量學等。
應用領域
英特爾cpu
當前納米技術的研究和應用主要在材料和制備、微電子和計算機技術、醫學與健康、航天和航空、環境和能源、生物技術和農產品等方面。用納米材料製作的器材重量更輕、硬度更強、壽命更長、維修費更低、設計更方便。利用納米材料還可以製作出特定性質的材料或自然界不存在的材料,製作出生物材料和仿生材料。
1、納米是一種幾何尺寸的度量單位,1納米=百萬分之一毫米。
2、納米技術帶動了技術革命。
3、利用納米技術製作的葯物可以阻斷毛細血管,「餓死」癌細胞。
4、如果在衛星上用納米集成器件,衛星將更小,更容易發射。
5、納米技術是多科學綜合,有些目標需要長時間的努力才會實現。
6、納米技術和信息科學技術、生命科學技術是當前的科學發展主流,它們的發展將使人類社會、生存環境和科學技術本身變得更美好。
7、納米技術可以觀察病人身體中的癌細胞病變及情況,可讓醫生對症下葯。
和生物技術一樣,納米科技也有很多環境和安全問題(比如尺寸小是否會避開生物的自然防禦系統,還有是否能生物降解、毒性副作用如何等等)。
社會危害
納米顆粒的危害
納米材料(包含有納米顆粒的材料)本身的存在並不是一種危害。只有它的一些方面具有危害性,特別是他們的移動性和增強的反應性。只有某些納米粒子的某些方面對生物或環境有害,我們才面臨一個真的危害。
要討論納米材料對健康和環境的影響,我們必須區分兩類納米結構:
納米尺寸的粒子被組裝在一個基體、材料或器件上的納米合成物、納米表面結構或納米組份(電子,光學感測器等),又稱為固定納米粒子。
「自由」納米粒子,不管在生產的某些步驟中存還是直接使用單獨的納米粒子。
這些自由納米粒子可能是納米尺寸的單元素,化合物,或是復雜的混合物,比如在一種元素上鍍上另外一張物質的「鍍膜」納米粒子或叫做「核殼」納米粒子。
現代,公認的觀點是,雖然我們需要關注有固定納米粒子的材料,自由納米粒子是最緊迫關心的。
因為,納米粒子同它們日常的對應物實在是區別太大了,它們的有害效應不能從已知毒性推演而來。這樣討論自由納米粒子的健康和環境影響具有很重要的意義。
更加復雜的是,當我們討論納米粒子的時候,我們必須知道含有的納米粒子的粉末或液體幾乎從來不會單分散化,而是具有一定范圍內許多不同尺寸。這會使實驗分析更加復雜,因為大的納米粒子可能和小的有不同的性質。而且,納米粒子具有聚合的趨勢,而聚合的納米粒子具有同單個納米粒子不同的行為。
健康問題
納米顆粒進入人體有四種途徑:吸入,吞咽,從皮膚吸收或在醫療過程中被有意的注入(或由植入體釋放)。一旦進入人體,它們具有高度的可移動性。在一些個例中,它們甚至能穿越血腦屏障。
納米粒子在器官中的行為仍然是需要研究的一個大課題。基本上,納米顆粒的行為取決於它們的大小,形狀和同周圍組織的相互作用活動性。它們可能引起噬菌細胞(吞咽並消滅外來物質的細胞)的「過載」,從而引發防禦性的發燒和降低機體免疫力。它們可能因為無法降解或降解緩慢,而在器官里集聚。還有一個顧慮是它們同人體中一些生物過程發生反應的潛在危險。由於極大的表面積,暴露在組織和液體中的納米粒子會立即吸附他們遇到的大分子。這樣會影響到例如酶和其他蛋白的調整機制。
環境問題
主要擔心納米顆粒可能會造成未知的危害。
社會風險
納米技術的使用也存在社會學風險。在儀器的層面,也包括在軍事領域使用納米技術的可能性。(例如,在MIT士兵納米技術研究所[1]研究的裝備士兵的植入體或其他手段,同時還有通過納米探測器增強的監視手段。
在結構層面,納米技術的批評家們指出納米技術打開了一個由產權和公司控制的新世界。他們指出,就象生物技術的操控基因的能力伴隨著生命的專利化一樣,納米技術操控分子的技術帶來的是物質的專利化。過去的幾年裡,獲得納米尺度的專利像一股淘金熱。2003年,超過800納米相關的專利權獲得批准,這個數字每年都在增長。大公司已經壟斷了納米尺度發明與發現的廣泛的專利。例如,NEC和IBM這兩家大公司持有碳納米管這一納米科技基石之一的基礎專利。碳納米管具有廣泛的運用,並被看好對從電子和計算機、到強化材料、到葯物釋放和診斷的許多工業領域都有關鍵的作用。碳納米管很可能成為取代傳統原材料的主要工業交易材料。但是,當它們的用途擴張時,任何想要製造或出售碳納米管的人,不管應用是什麼,都要先向NEC或者IBM購買許可證。
發展趨勢
高級納米技術,有時被稱為分子製造,用於描述分子尺度上的納米工程系統(納米機器)。無數例子證明,億萬年的進化能夠產生復雜的、隨機優化的生物機器。在納米領域中,我們希望使用仿生學的方法找到製造納米機器的捷徑。然而,K Eric Drexler和其他研究者提出:高級納米技術雖然最初會使用仿生學輔助手段,最終可能會建立在機械工程的原理上。
美國
美國國家科學委員會(National Science Board)於西元2003年底批准「國家納米科技基礎結構網路計劃」(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,簡稱NNIN),將由美國13所大學共同建構支持全國納米科技與教育的網路體系。該計劃為期5年,於公元2004年一月開始執行,將提供整體性的全國性使用技能以支持納米尺度科學工程與技術的研究與教育工作。預估5年間至少投資700億美元的研究經費。計劃目的不僅在提供美國研究人員頂尖的實驗儀器與設備,並能訓練出一批專精於最先進納米科技的研究人員。
1.美國發展最新納米細胞製造技術
納米技術可製造出粒子小於人類血管大小的物體,美國國家標准與科技協會(NIST)指出已研究出一種生產一致的,且能夠自行組合的納米細胞(Nanocells)的方法,以應用在封裝壓縮葯物的治療工作上。這種技術當前可被運用在葯物的包裝技術上,可以更精確地確保葯物的用量,未來將運用在癌症化學治療的相關技術上作更進一步的研究。
納米計劃是公元2005年聯邦跨部會研發預算的主軸,達9.8億美元。
2.DNA檢測晶元的進展
公元2004年一月,美國HP正式對外發表其用來快速進行DNA檢測的納米級晶元。2004年在DNA檢測上采以光學原理為基礎的「基因微晶元法」(DNA microarrays)繁復的檢測步驟,HP團隊改由將此繁復步驟交由電路晶元處理;製作上,DNA檢測晶元的感測元件是一條利用電子束蝕刻法(electron-beam lithography)與反應性離子蝕刻法(reactive-ion etching)所製成粗細約50納米的納米線。然就商業上考量,成果卻過於高昂,因此研究團隊正發展利用較便宜的光學蝕刻法(optical lithography)以製成DNA檢測晶元元件的技術。
3.地下水污染改善之研究
地下水污染是現代被廣泛討論的一項重大議題,現代,美國發表了一種納米微粒(nanoparticles)技術,在此微粒中心為鐵芯(iron)而其外則由多層聚合物加以包覆,其中,內層是由防水性極佳的復合甲基丙烯酸甲脂(poly methl methacrylate;PMMA)包覆,而外層則由親水的sulphonated polystyrene進行包覆。由於親水性外層使納米微粒溶於水,內層防水層則能吸引污染源三氯乙烯(trichloroethylene)。納米微粒中的鐵芯使得三氯乙烯產生分裂,進而使得此項污染源逐漸分裂成無毒的物質。
4.啟動癌症納米科技計劃
為廣泛將納米科技、癌症研究與分子生物醫學相互結合,美國國家癌症中心(NCI)提出了癌症納米科技計劃(Cancer Nanotechnology Plan),並將透過院外計劃、院內計劃與納米科技標准實驗室等三方面進行跨領域工作。計劃設定了六個挑戰:
預防與控制癌症:發展能投遞抗癌葯物及多重抗癌疫苗的納米級設備。
早期發現與蛋白質學:發展植入式早期偵測癌症生物標記的設備,並發展能收集大量生物標記進行大量分析的平台性裝置。
影像診斷:發展可提高解析度到可辨識單獨癌細胞的影像裝置,以及將一個腫瘤內部不同組織來源的細胞加以區分的納米裝置。
多功能治療設備:開發兼具診斷與治療的納米裝置。
癌症照護與生活品質提升:開發改善慢性癌症所引發的疼痛、沮喪、惡心等症狀,並提供理想性投葯裝置。
跨領域訓練:訓練熟悉癌症生物學與納米科技的新一代研究人員。