❶ 我同事他通過量化網中的量化交易之中賺了錢,真有這么靠譜嗎
確實有,但是也要看數據模型完不完善,數據完不完整,只能說要看量化網上的量化交易的技術如何。
❷ 在投行內部做量化交易與獨立出去做量化交易有何不同
這里我們只說量化交易,不討論量化研究和量化定價這一塊的業務。
量化交易是分兩個階段的。第一個階段是2008年以前,或者說Dodd-Frank法案以前,投行內部林立著各樣的很多對沖基金或者類對沖基金的實體,比如Morgan Stanley的PDT(Process Driven Trading)和高盛的Global Alpha,而很多投資銀行的自營交易業務也很像對沖基金。在這一階段,這些類對沖基金的實體和外面的對沖基金是沒有啥區別的,業務很類似——賭方向、做部分對沖(Partial Hedging)、跨市場套利,也非常敢於承擔風險。
當時在投行內做對沖基金類型的量化交易有著非常大的優勢,因為兩點——第一是銀行有著非常良好的融資渠道,融資成本顯著地低於當時的對沖基金,如果你嘗試去組建過一個基金,你就知道資金成本對於一個對沖基金的影響多麼大——巴菲特這么多年的成功是離不開長期1.6倍的財務杠桿和其低於中央銀行存款准備金率的資金渠道的(詳細內容參見AQR的論文——Buffet's Alpha)。 炒股需要經常總結,積累,時間長了就什麼都會了。為了提升自身炒股經驗,新手前期可以私募風雲網那個直播平台去學習一下股票知識、操作技巧,對在今後股市中的贏利有一定的幫助。
第二是銀行有著一個灰色的信息流——客戶的交易記錄。這個交易信息,就是今天,也是非常有用的內部消息。幾周前Bill Gross從PIMCO離開時,所有投行的Sales都瘋了,不停地研究之前PIMCO在自己銀行的倉位,然後分析那些債券最有可能最先被清盤,從而給其它客戶交易建議。而當年文藝復興多次更迭合作的投行,就是因為其大獎章基金的交易記錄得不到妥善的保密,很多合作銀行的自營交易桌跟著交易。
這兩個優勢造成了當時的自營交易極其暴利,而且管理層為了做大業績,全力支持明星交易員放大杠桿——而實際上,金融危機期間很多的CEO都是靠著自營交易的暴利業績從交易大廳升職到管理層的——比如Citi的前任CEO Pandit和摩根斯坦利的前任John Mack。
這也造成了,為什麼很多高盛離職的自營交易員在金融危機後,當銀行不能做自營交易後出來自立門戶開設對沖基金,卻完全無法復制當年的業績——因為他們是因為整個組織的強大而獲得超額收益,當失去了資金優勢和信息優勢後,一切都成為了浮雲。
2008年,准確說是2009年後,一切都變了。
首先是政府明令規定自營交易不讓幹了,於是各種投行旗下的基金,放入資管部的放入資管部(比如Goldman Sachs Global Alpha進入GSAM),獨立營業的獨立營業(比如PDT從摩根斯坦利分離),要不直接就關門大吉了(比如UBS、德銀)。
還有一些碩果僅存的,一般是在股票交易部門,打著對沖為名,通過會計手法,維持著極小的自營規模,這種類似的團隊很多投行都有。但是不成氣候了,也不會造成任何系統性的風險——當然,各種馬路傳奇故事也銷聲匿跡了。
銀行內部還有沒有量化交易了,其實還有——那就是隨著計算機技術進步的自動化做市交易。做市在國內這個概念剛剛出現——因為期權做市商制度的引入。但是在美國這個是從華爾街開始就有的交易體系了。簡單來說,就是假設你經營一家買可樂的小店,你有兩個主要的交易——一是從總經銷商那裡拿貨,用的價格是Bid,二是分銷給街邊下象棋和夕陽下奔跑的孩子們,這是Ask。Bid是你的進價,Ask是你的出貨價格,Bid一般小於Ask(除非你是搞慈善的)。你持續的維持報出這兩個價格,同時根據你的存貨來調整報價或者對應報價的數量——比如你的存貨太多,大爺不出來下象棋了,你就降低Bid,這樣很難進到貨了,而保持Ask,等待有人來消耗你的庫存。
這個過程就是基本的做市商交易流程,在金融中,由於沒有實際的總經銷商供貨,你的報價(Bid-Ask)是基於你對於對應資產的Fair Price的估計來決定的,通常是你算出來的均衡價格加減一個值構造成Bid-Ask組合。在很長的時間內,這個報價都是靠人來完成,這個過程是枯燥的,而且很容易出錯——而對於期權類產品(非線性價格)也很難快速報價。我之前和期權交易員合作過很長時間,他們的工作不一定智力上很難,但是對於人得耐力絕對是一種挑戰——因為在開市後他們要注意力高度集中的報價,一quote兩quote,一quote兩quote,似爪牙,似魔鬼的步伐,報價,報價,在這交易大廳報價... ...
於是,從簡單的資產起,從交易所級別開始支持API交易了。什麼是簡單的資產,就是Vanilla類別的,比如個股、指數、外匯、國債等等。因此投行由於本來就是大量資產的做市商,開始把原來這套過程通過計算機來完成。後面大家發現計算機是完美勝任這項工作的,因為計算機能夠高速計算庫存來調整報價,還能報出很多復雜的單類型。因此從2000年開始個股、指數開始逐步被自動化做市來包攬,2005年後個股期權自動化做市大熱,而2008年後外匯自動化做市也相當成熟了,2010年開始國債自動化做市也在美國興起——這也是我目前在工作的內容。
那麼對沖基金呢,除了傳統的量化Alpha,他們難道不能也做這個業務嗎?實際上,很多對沖基金的自動化做市業務比投行還要好——比如Citadel,比如KCG。但是區別何在?區別在於兩點,第一是很多對沖基金不是專屬做市商(Designated market maker)。DMM的特權是其有專屬席位——在美國這樣高度商業化的國家,DMM也是非常稀有的。原因在於,DMM是有責任的,那就是在各種大型金融危機中,當流動性極差的時候,DMM還是要持續的報價,一quote兩quote,一quote兩quote,似爪牙,似魔鬼的步伐... ... 在流動很差的時候這是非常危險的,因為大家丟給你的都是不好的資產,比如大跌的時候,都在賣,你的Bid反復被Hit,然後又沒人來hit你的Ask,浮動虧損可以非常大。那麼DMM的特權呢,DMM可以獲得非常高比例的rebate,也就是說,傭金返點非常高。這是對於其承擔的義務的回報。
第二就是絕大多是對沖基金不是Broker,也是你一般想買股票不會去找他們報價。在外匯和債券這類市場中,有兩級市場,一個是B2C市場,也就是零售市場,裡面基本都是Broker-Client,而第二級就是B2B市場,都是Broker-Broker。一般來說,B2B市場的Bid Ask Spread要低一些。一個形象的例子就是,我小時候去批發書的商店買書,一個商店有本習題集沒有,於是老闆去隔壁家拿了一本,賣給我,最後肯定這個老闆要把一部分價格還給隔壁家,我付的價格和老闆付給隔壁家的價格就是B2C到B2B市場的差價。
這里投行又耍流氓了,他們有著B2C市場的接入優勢,因此只要客戶量夠大,基本都能把自動化做市實現盈利——因為根據大數法則,一定時間內,買賣雙方的交易量應該是均衡的。
那麼對沖基金靠什麼——靠更好的策略。對沖基金如果要做高頻做市的,基本在B2B市場參與,他們不是DMM,但是也自己去報價,然後靠著對於價格走向的准確判斷,來調整報價,實現拿到多數對自己有利的單,或者持有更久符合預測方向的單,來達到盈利。這種不是DMM卻自發去做做市商的行為,叫做Open Market Making。
Citadel是期權自動化做市的王者,頂峰時期一年的利潤可以到1 Billion(2009),而整個市場那年的利潤也就是7 Billion左右。因此如果策略逆天,沒有客戶流,也能靠做市賺錢的。
此外,做市業務之外,對沖基金還多了很多機會。因為很多業務銀行做起來不劃算——比如商品。考慮一個金融類公司,不能光討論交易策略,宏觀上你一定要思考資金成本等問題,這才是投資之道在投資之外。商品這些之前銀行幹了很多壞事的業務(詳細參加高盛的銅交易和JP的風電交易)都被監管方克以了極高的資本罰金。這是Basel III裡面的規定,也就是你拿著1元的股票和1元的監管資產過夜受到的處罰是完全不同的,具體演算法參見Basel對於RWA(Risk Weighted Asset)計算的細則。這一系列監管,造成了對沖基金有了大量的新業務——因為投行退出。而大量銀行的人才也流向了對沖基金。
現在門徑這么清晰,那麼投行和對沖基金做量化交易的工作差別就很明顯了——投行主要以自動化做市為中心的高頻信號、客戶流分析、報價博弈論等研究為主。而對沖基金主要是傳統的量化Alpha、量化資產配置為主——當然還有公開市場自動化做市了。
希望可以幫助到你,祝投資愉快!
❸ 量化交易和高頻交易有什麼區別
量化交易是指把操作的信號通過程序化,用計算機控制,可以是高頻的,也可以是低頻的,和操作頻率沒有關系。高頻交易,也有可能是人工的,只不過,人工太累,所有很多的高頻交易都被做成了量化的。
❹ 「量化高頻交易」是怎樣的一種概念如何去簡單理解這個交易技術
#銀心分享#量化投資是通過綜合運用金融、數學和計算機知識,發現市場規律、尋找大概率內事件,發現容投資機會。 「量化投資簡單地說,就是先通過電腦來計算:時間、價格、經濟指標、市場消息等,當它們達到模型要求時,就自動買賣。」計算機根據每秒數次更新的報價不停計算,確定要不要加倉、減倉,算算用了多少錢,賺了還是虧了,賺了多少或者虧了多少。 以量化投資裡面具有代表性的一種模式———統計套利為例:成都市兩大菜市場都在賣大白菜,實時監控兩個市場的價格,如果發現一個市場大白菜價格為八毛一斤,另一個市場大白菜價格為七毛一斤,兩個市場之間的運費是每斤五分,這個時候我就可以在一個市場買入大白菜,拿到另外一個市場去賣掉,每一斤可以賺到五分錢,如果規模大,一天很多次這樣做生意,那麼累計的利潤就很可觀。「這就是統計套利基本原理的簡化案例。」他說。
❺ 高頻交易和量化交易到底有什麼區別
從歷史上看,很多高頻交易公司的創始人都是交易員出身,原來就從事衍生品的做市、套利等業務。一開始這些工作並不需要多高深的知識。隨著計算機技術的發展,交易的自動化程度和頻率也逐漸提高,這些公司逐漸聘請一些數學、統計、計算機背景較強的人員加入以適應形勢的發展。當然,這個過程也出現了一些分化,有的公司還是保留了交易員在公司的主導地位,並且始終未放棄人工交易,最終形成了人機結合的半自動交易;而另外一些公司對新鮮技術的接受程度更高一些,往往採取全自動的交易模式。事實上,也沒有證據表明全自動交易的公司就比半自動交易的公司更為優越,到目前為止,也只能說是各有利弊。
人工交易的最大弊端在於手動下單的地方離交易所較遠,在行情劇變的時候往往搶不到單。在這一點上,全自動交易的公司可以通過託管機房來最大程度減少信號傳輸的時間,不過自動化交易往往因為程序過於復雜,加上很多公司人員流動較大,在程序的維護上會出現一些失誤,最終程序出錯釀成大禍,比如著名的騎士資本。
至於過度擬合無法抵禦黑天鵝事件,那是人工交易和自動交易都無法避免的問題。一般來說,Getco、Jane Street、SIG、Virtu Financial等是半自動交易,Tower Research、Hudson River Trading、Jump Trading等是全自動交易。
量化投資公司跟高頻交易公司則有很大的不同。首先,美國的量化投資公司基本上都是量化背景極強的人創辦的,比如說文藝復興的創始人西蒙斯是數學家出身,DE Shaw的創始人David Shaw是計算機教授出身,AQR的創始人Cliff Asness是金融學家出身,而高頻交易公司則更多是傳統交易員創辦的;其次,量化投資一般依賴於復雜的模型,而高頻交易一般依賴於運行高效的代碼。
量化投資公司的持倉時間往往達到1—2個星期,要預測這么長時間的價格趨勢需要處理的信息自然非常龐大,模型也因此更為復雜,對程序的運行速度反而沒那麼敏感;高頻交易處理信息的時間極短(微秒或毫秒級),不可能分析很多的信息,因此模型也趨於簡單,競爭優勢更多依靠代碼運行的效率,很多人甚至直接在硬體上寫程序;而最後,量化投資的資金容量可達幾百億美元,而高頻交易公司往往只有幾千萬至幾億美元,但由於高頻交易的策略表現遠比量化投資穩定,如Virtu Financial交易1238天只虧1天,因此一般都是自營交易,而量化投資基金一般來說都是幫客戶投資。
❻ 高頻交易和量化交易有何不同
高頻交易和量化交易有3點不同:
一、兩者的概述不同:
1、高頻交易的概述:指從那些人們無法利用的極為短暫的市場變化中尋求獲利的計算機化交易。
2、量化交易的概述:指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略。
二、兩者的作用不同:
1、高頻交易的作用:這種交易的速度如此之快,以至於有些交易機構將自己的「伺服器群組」安置到了離交易所的計算機很近的地方,以縮短交易指令通過光纜以光速旅行的距離。
2、量化交易的作用:極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
三、兩者的特點不同:
1、高頻交易的特點:
(1)高頻交易都是由計算機自動完成的程序化交易;
(2)高頻交易的交易量巨大;
(3)高頻交易的持倉時間很短,日內交易次數很多;
(4)高頻交易每筆收益率很低,但是總體收益穩定。
2、量化交易的特點:
(1)紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
(2)系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
(3)套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
(4)概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
❼ 談談量化交易的一些「深坑」
量化投資中的一些坑就是反復振盪行情中手續費變很多了。
❽ 為什麼不建議輕易轉行做量化玩高頻
高頻交易是指從那些人們無法利用的極為短暫的市場變化中尋求獲利的計算機化交易,比如,某種證券買入價和賣出價差價的微小變化,或者某隻股票在不同交易所之間的微小價差。這種交易的速度如此之快,以至於有些交易機構將自己的「伺服器群組」(server farms)安置到了離交易所的計算機很近的地方,以縮短交易指令通過光纜以光速旅行的距離。
❾ 在中國,做量化交易一天的工作是怎樣的
做量化交易一天的工作:
8:00~:00: 打開交易策略,設置一些運營參數
9:00~9:30: 觀察策略運轉,確保沒有問題
9:30~15:30: 解決已有策略的問題並研究新策略,測試新想法
15:30~17:00: 分析交易記錄, 確定第二天的交易計劃
17:00~18:00: 運動
崗位職責:
分析金融市場(期貨、股票等)數據,尋找可利用的機會;開發與維護量化交易策略;提供機器學習/數據挖掘相應的技術支持;
崗位要求:
1.熟練計算機編程能力,熟練掌握至少一門編程語言,python優先;
理工科背景,具有良好的數理統計、數據挖掘等相關知識儲備,熟悉機器學習方法(分析科學問題和相應數據,建立模型和方法,驗證模型和方法,應用模型和方法並分析結果,改進模型和方法);
有處理分析大量數據的經驗,並能熟練選擇和應用數據挖掘和機器學習方法解決科研和工作中的實際問題;良好的自我學習和快速 學習能力,有工作激情,喜歡金融行業;兩年及以上實驗室研究經驗或研發類工作經驗優先;
(9)高頻量化交易離職擴展閱讀
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,
極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。