相对于美国成熟的资产管理业务发展历史,中国的资产管理有着12年年轻的历史。正因为是起步阶段,人们能看到其无限发展空间和巨大潜力。一些大的金融机构运用资产管理进行经营,在金融危机期间保持着盈利,业内不乏有成功案例。 资产管理业务有个两难问题,即业务扩展和风险管理的平衡问题,也就说如果业务扩展太快,太多,风险控制就会弱,如果太关注于风险控制的话,可能业务扩展会慢。其实观察成功的案例会发现,这两点是可以做到平衡的。在国外金融机构会发现很多有意思的产品,比如气象气候、低碳、降雨量、体育等基金、债券,可是在中国却是比较空白。其实这是市场细分的结果,举个例子,如气象基金,今年冬天会不会冷?如果不冷的话,使用的燃料能源就会少,就会影响这类产品,如果有天然气产品,就可以进行价格对冲。这也是很多机构追求平稳发展来利用资产管理的原因。 拿期货公司来说,未来将大大偏向程序化交易策略,由此形成成熟的人才团队来更好地服务客户,将会使期货公司获得永续发展,拓宽业务利润获取的范围和深度。专家建议中国的资产管理业务应更重视专业性,对行业、公司、个人发展都是最重要的一点。根据麦肯锡的预计,中国的资产管理业务在未来的十年将保持每年24%的增长率,成为中国乃至世界发展最快的金融产业,可以说中国资产管理业将涌现出无限机遇。 目前国内的量化交易大概占到市场交易量的20%,每年都在增加,特别是这两年增长迅猛。70%的交易量由程序化交易完成,国内才刚刚起步,因此,国内的发展空间还非常巨大,产品的种类也会更加丰富,策略复杂度和交易工具的精细化也会不断提高。 从投资者身份来看,目前量化投资者主要人群集中在期货公司、私募基金以及券商的自营、基金公司的专户。规模上,以私募基金为主要参与群体。 从操作风格来看,目前期货市场有四类量化投资者,分别是阿尔法产品的使用者、趋势性交易者、套利交易者以及高频交易者。阿尔法产品的使用者,即利用股指期货与股票现货进行搭配,获得股票的超额收益;趋势性交易者,充分运用各种模型对价格进行预判,这种交易者的资金从几万到几千万都是存在的;套利交易,包括无风险的股指期现套利和统计套利;高频交易者,这种一般利用期货市场价格的微小变动进行快速交易,从而获得高收益。 量化交易模式越来越被更多的机构投资者所采用,量化交易模式将会成为主流的交易模式。届时,量化投资产品可能更加多样化,量化投资将会成为金融机构争夺客户资源的主要工具,然后随着量化工具更新速度的加快,量化投资的应用领域将会不断拓宽。 由此可见,学习资产管理与量化投资对公司业务和个人的发展是十分迫切并且必要的。
2. 量化金融和传统金融有什么不同
量化金融和传统金融的区别是:量化金融学主要是涉及量化投资的一门新兴金融学科。量化投资是以金融衍生品和工具为基础的,对于数据和信息要求很高,是一个智慧型、智力型、智商型为主导的产业。
传统金融,主要是指只具备存款、贷款和结算三大传统业务的金融活动。广义的寿命周期成本还包括消费者购买后发生的使用成本、废弃成本等。简单来说,金融就是资金的融通。金融是货币流通和信用活动以及与之相联系的经济活动的总称,广义的金融泛指一切与信用货币的发行、保管、兑换、结算,融通有关的经济活动,甚至包括金银的买卖,狭义的金融专指信用货币的融通。
3. 银行的金融市场部里面,需要有量化分析师吗请问在这个部门里面,量化分析师主要的工作内容是什么谢谢
你好,来金融市场部主要自是从事工作是:债券回购、债券承销与买卖、外汇买卖、结售汇、贵金属买卖、结构化产品交易、各类衍生产品交易、代客资产管理、代客资金交易等金融市场业务。至于量化分析师,主要是通过各种金融分析软件,建立数学模型,模拟市场的走势,实现金融产品的套利。
我去年经济类硕士毕业,目前从事金融分析类工作,对这个行业还算比较了解。有什么想要了解的可以接着问,希望可以帮到你。
4. 机器学习到底在量化金融里哪些方面有应用
随机过程stochasticprocesses泊松过程Poissonprocesses更新过程renewalprocesses布朗运动Brownianmotion仿射(跳跃)扩散过程affineprocesses(oraffine-jumpdiffusions)列维过程Levyprocesses连续状态分枝过程随机微分方程半鞅semimartingale偏微分方程partialdifferentialequations偏积分-微分方程partialintegro-differentialequations倒向随机微分方程backward二阶倒向随机微分方程secondorderbackward随机偏微分方程随机最优控制stochasticoptimalcontrol极值建模modelingofextremes风险度量riskmeasures蒙特卡洛模拟MonteCarlosimulation============StochasticProcesses============IntroctionandReferences『随机过程』(stochasticprocesses)是概率论的一个分支,一般来说是特指一个学科,而『蒙特卡洛』(MonteCarlo)是一种获得某种统计量、待求值或函数值的方法,二者不太具有明显的并列关系或者包含与被包含关系。随机过程从内容上来说大致有两类:第一种我称之为应用随机过程,也是大家一般所说的随机过程,内容包括几种具体的经典随机过程,例如:Poissonprocess,renewalprocess,,basicsofBrownianmotion,以及他们的应用,比如queuesystems等。相关的书籍有:Stochasticprocesses,SheldonRoss另外一本稍微高阶书的是CornellUniversity的“李登辉”教授(LeeTengHuiProfessor)、应用概率大牛SidneyResnick所著的第二种是指随机过程一般理论:一般包括概率论、随机过程的测度论基础(probabilityspace、convergencetheory、limittheory、martingaletheory等),Markovprocess,stochasticintegral,,semimartingaletheory(半鞅)尤其是后者等比较艰深的概念和问题(内容参考以下书籍);其中入门的书籍有:,,TomasBjork这两本是与金融交互讲的;另外一本稍微偏理论的随机分析入门书籍是:,BerntOksendal高阶数学研究生水平的书籍有:,,Karatzas,,Revuz,,Jacod,Shiryayev一本比较艰深的讲套利数学的研究生读物(需要懂半鞅、泛函分析):Mathematicsofarbitrage,Delbaen,Schachermayer,其中讲了不同模型设定下的的套利理论,包括离散模型,连续模型比如半鞅等过程驱动的市场对应的套利结论;utilitymaximization,convexality等概念。当然,学习高级随机分析的书籍需要比较坚实的概率论基础,在此我推荐:Probability:theoryandexamples,,Dudley特别地,我强烈推荐两本我当作参考文献的概率论书籍。一下两本书全面介绍了概率论基本理论,非常适合已经有一定测度背景并且想继续深入学习随机分析的读者:Probabilitytheory:acomprehensivecourse,,KallenbergOverview『数学金融』中涉及的随机过程应该主要涵盖上述第一类里的几乎所有内容和上述第二类里的stochasticintegrals,(SDE),semimartingale等,其中实务中最常用的是Itoprocess和Levyprocess;因为他们都有比较好的马尔可夫性(Markovianstructure),根据Feynman-Kac等定理,所以又能与partialdifferentialequation和partialintegro-differentialequation联系起来。这也是期权定价的PDE方法。讲定价公式可以写成PDE的好处是可以使用现成的PDE数值方法。此外,Itoprocesses和Levyprocesses是特殊的semimartingale。用semimartingale做金融建模的好处有两点:1、semimartingale作为stochasticintegrator,是从一致度量(uniformmetric)下可料(predictable)被积过程所形成的空间到随机变量()所形成的空间的连续线性映射,这种性质对应于金融资产价格的稳健性,通俗地讲就是:如果你对投资策略施加一个小小的扰动,最后投资组合的价值在某种意义下也会只有相应较小的扰动。因此用semimartingale模拟金融价格是合理的。2、semimartingale组成的空间在Emerytopology(metrizable)下是完备的;这个性质加上一个比较符合经济逻辑的无套利假设(Nofreelunchwithvanishingrisk,NFLVR),可以推出存在sigma-martingalemeasure,反之亦然;这是目前最广义的套利定价理论,它的特殊形式是:1、在离散模型中,无套利等价于存在等价鞅测度,2、在Itoprocesses中,NFLVR等价于存在等价局部鞅测度(),而NFLVR可以推出无套利。这里可以参考,Delbaen,Schachermayer,慎入,作者均是泛函分析领域的大牛,教过无数顶尖分析和概率领域的学生,写的文章非常艰深;前者也是鄙人所在学校ETHZurich概率论与金融数学组的退休教授,他们的学术成果请自行scholar.google;笔者的老师用了大约20学时教相关的半鞅知识,20学时教这篇论文)。简而言之,用这两种随机过程模拟价格是可以满足无套利的,因此可以用鞅方法定价,这即是用这两种过程建模的好处之二。在衍生品定价问题中,一般假设underlyingpriceprocess服从例如上述某种随机过程,定价则是利用金融工具的复制(超复制super-replication)等方法,在特定金融市场的假设(比如无套利,或者更特殊的假设NFLVR;又比如自由买卖假设;假设很重要!!!)下求得一个该金融工具的无套利价格,以及对应的复制(或超复制)策略。当然(超)复制问题大概涉及两个数学问题,一个是:optionaldecompositiontheorem,这个定理与最广义的FTAP有着天然数学美感的交互;另一个是随机控制论中的stochastictargetproblem,问题是如何找到一个期初价格和交易策略使得期末payoff被(超)复制。总之,不论在何种方法和假设下,资产定价理论中都用随机过程模拟资产价格。,这是搞金融数学不得不懂的随机过程,略,请参考:,StevenShrevePoissonprocesses,compoundPoissonprocesses在金融数学中的应用之一是:在结构定价问题中,我们假设资产过程除了布朗运动驱动的部分之外,还有跳跃,而跳跃经常是由这两种过程模拟的;更一般地,我们还可以假设资产价格过程服从更广义的跳跃形式,该跳跃形式存在于Levyprocesses,affineprocesses或者中,一般称作Levy-typejump。Levyprocesses可以看做;Levyprocess区别于Brownianmotion和compoundPoissonprocess的地方在于,Levyprocess还有一项squareintegrablemartingale,它可以理解为是intensity为无穷大、跳跃幅度无穷小(因此有可积性)的compensatedcompoundpoisson,在Ito-Levydecomposition中,它是由可数个组成的。在模型的微分形式中,跳跃和布朗运动驱动的部分经常是线性存在。关于Levyprocesses,请参考,,ApplebaumRenewalprocesses,Levyprocesses经常被用于金融保险中的Ruin问题,鉴于这已经超越我的知识范畴,在此不详细讨论,一本可能的参考文献是:,Kyprianou除衍生工具性定价问题,在金融控制问题中,一般也假设资产过程价格或者其他相关过程服从某种随机过程。比如在最简单的Mertonproblem中,我们假设资产价格服从多维几何布朗运动。又比如在Jacod和Shiryayev在1993年发表的关于optimaldividend的文章中,公司的价值服从一个带线性漂移的布朗运动减去一个左极限右连续的红利支付过程,然后用一个停时(stoppingtime)使其停止于价值首次为0的时刻。随机过程在金融中也可以描述资产价格之外的过程。比如SDE可以描述短期利率,在此请参考,StevenShreve关于伊藤过程驱动的高级利率模型,比如affineprocess,请参考Termstructuremodels:agraatecourse,DamirFilipovic随机过程还可以描述除了价格、利率之外的金融变量。比如在著名数理金融学家DarrelDuffie写的关于intensitybasedcreditriskmodel的文章中(原文叫,Duffie),假设defaultintensity服从affineprocess,则可违约债券定价形式与短期利率下的债券定价有相同的形式和计算方法,只是将短期利率改写成违约强度而已。关于affineprocess,请参考,Duffie,Filipovic,-diffusions,Duffie,Pan,Singleton以及以上文到的那本讲Termstructure的书:Termstructuremodels:agraatecourse,DamirFilipovic在KMV模型中,假设公司价值服从某个随机过程,比如几何布朗运动。以上这两种随机过程在信用风险中的应用均可以在DarrelDuffie的书CreditRisk:Pricing,Measurement,andManagement中找到。随机过程也可以描述衍生金融工具的价格。比如我们知道欧式期权的payoff(在这里是期末价值),同时知道underlyingassetpriceprocess,我们可以论证欧式期权的价格过程满足倒向随机微分方程(BSDE);如果underlyingassetpriceprocesses满足Markovianstructure,则该BSDE为一个前向-倒向随机微分方程(FBSDE);其中方程期末条件是payoff,方程生成元(generator)与underlyingprice相关;方程有一对解,第一个解是期权价格过程,第二个解则对应欧式期权在该市场下的复制策略。如果假设underlyingprocess是几何布朗运动,则该BSDE为线性BSDE,其解的形式就是欧式期权的定价公式:风险中性测度下期末值贴现的期望。相关文献请参考:Backwardinfinance:Karoui,Peng,Quenez类似地,BSDE也可以描述效用,称作随机微分效用(stochasticdifferentialutility),可以参考:Stochasticdifferentialutility,Duffie,Epstein此外MarekMusiela,RamaCont,TomasBjork,ReneCarmona等人也尝试过用随机偏微分方程(,可以近似理解为用无穷维随机微分方程或Banach空间取值的随机微分方程);用SPDE建模就是用SPDE来模拟一个取值为连续函数的forwardratecurve演化过程。这应该就是Heath-Jarrow-Morton-Musiela,请参考:,,TomasBjork,:aninfinitedimensionalapproach,RamaContInterestratemodels:,ReneCarmona当时实务中并不需要这么多高深的数学知识。只要能明白概率论,应用随机过程,随机分析(基本内容一般包括stochasticintegral,SDE,特别是与Itoprocesses相关的内容)就能看懂绝大多数常用模型了。如果是做金融数学学术,则额外还需要专攻以下方向中的一个或多个:Levyprocess,affineprocess,backward,semimartingale,stochasticcontrol,stochasticdifferentialgames,stochasticPDE,等。除了概率论,金融相关的数学还涉及偏微分方程(及黏性解),控制论,数值分析,统计计量等。============MonteCarlo===========MonteCarlo最早是摩纳哥赌场的名字,笔者曾在七月造访。『MonteCarlo』算法一般是指,利用随机抽样的方法,获得一些随机系统的统计量或者参数。比如你有一颗硬币,你想知道掷出后获得正面的概率,那么你通过大量试验以后,可以利用获得正面的频率来估计,这也是中心极限定理的结果。金融中的一个应用是,通过MC来模拟多条标的资产的价格走势,代入形式为求概率期望的定价公式就可以求出估计的期权价格的模拟值。此方法则是实现定价的MC方法。将扔硬币和Brownianmotion联系起来的数学定理是Donskerinvarianceprinciple:我们可以想象用硬币反复地大量地投,减小面值(+\epsilon,-\epsilon),同时减小投币时间间隔(\delta),那么累积值过程在某种意义下收敛于布朗运动。MC具体还有很多其他金融应用,比如求某一个风险度量下的风险值。============MachineLearning===========『机器学习』是一门学科也可以算是方法。我在这领域涉足不深,曾经学习的是主要基于数据、利用回归分析、贝叶斯理论等方法种决策树并用它投票,用以实现模式识别、分类和预测等问题。具体方法有adaboost,baggingprediction,randomforest等。假设你是银行数据分析师,你有客户的数据,比如年龄,性别,年收入等。如何根据这些数据来简单的构造一个信用分类法则是机器学习的一个简单应用。
5. ETF量化金融里面被骗
现在骗人的把戏太多了,越是追求高报酬的越容易被骗,理财慎重!如果已知高风险,赌的心态,那么愿赌服输。
6. 量化投资、量化交易、量化金融,这三者有什么区别吗
其二,行为金融学认为,投资者是不理性的。任何一个投资个体的判断与决策过程都会不同程度地受到认知、情绪、意志等各种心理因素的影响。基金经理和投资研究员在一段时间跟踪某只股票之后,由于时刻关心股价的表现和基本面的变动,可能出现不同程度的情感依赖,“和股票谈起恋爱”。即使出现了下跌趋势,也可能因为过度自信、抵制心理等不理性的分析出发点而导致投资、荐股时的行为偏差。而量化投资依靠计算机配置投资组合,克服了人性弱点,使投资决策更科学、更理性。
7. 请问一下,有人知道什么是 量化金融学吗
量化金融学主要是涉及量化投资的一门新兴金融学科。量化投资是以金融衍生品和工具为基础的,对于数据和信息要求很高,是一个智慧型、智力型、智商型为主导的产业。
8. 想从事量化金融高考报什么专业好
跟量化金融有关的本科专业,无外乎金融、经济、数学、统计、计算机等,当然,还有金融工程、大数据等衍生专业。但我觉得本科读的专业应该宽一些,不应该赶时髦。尽量读一些历史悠久的专业。比如中山大学四年前成立了一个应用统计专业,现在就撤销了,也就是这个专业的寿命只有四年。
9. 量化金融分析师具体是做什么工作的
金融分析师主要工作是收集和分析金融信息、确定其走势并做经济预测。
基于这些详尽的分析,他们做出报告, 为客户和同行们提供金融和投资的咨询意见。
10. 量化金融贷款需要交会员费888才能提现
下会的 定是骗局 点开回复了