Ⅰ 如何在家搭建一个ibm modeler数据挖掘服务器
数据挖掘是一项复杂的工程,为了让整个项目便于控制和管理,我们必须遵从一定的标准流程。而 CRISP-DM 模型就是数据挖掘业界比较流行的一种模型。
CRISP-DM,即跨行业数据挖掘标准流程,这是一种业界认可的用于指导数据挖掘工作的方法。作为一种方法,它包含工程中各个典型阶段的说明、每个阶段所包含的任务以及这些任务之间的关系的说明;作为一种流程模型,CRISP-DM 概述了数据挖掘的生命周期。图 1 展示了 CRISP-DM 中定义的数据挖掘生命周期中的六个阶段。
商业理解:了解进行数据挖掘的业务原因和数据挖掘的目标
数据理解:深入了解可用于挖掘的数据
数据准备:对待挖掘数据进行合并,汇总,排序,样本选取等操作
建立模型:根据前期准备的数据选取合适的模型
模型评估:使用在商业理解阶段设立的业务成功标准对模型进行评估
结果部署:使用挖掘后的结果提升业务的过程
下面,我们以某超市的市场推广活动为例,从商业理解开始,一起来学习如何利用 Modeler 的强大功能来进行数据理解。
Ⅱ 金融学 论文 用的什么数据模型
兄弟,这个你就不知道了吧,对数化之后数据的数量级就缩小了,那敢情多好啊,因为金融经济数据很多都是时间序列,这种数据在处理的时候需要数据是平稳的,一般对数化后很多数据就平稳了,所以很多人都愿意这么干
Ⅲ 金融需要 hadoop,spark 等这些大数据分析工具吗使用场景是怎样的
看看用亿信ABI做的相关案例
银行大数据应用
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。总的来看银行大数据应用可以分为四大方面:
1、客户画像
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于银行自身拥有的数据有时候难以得出理想的结果甚至可能得出错误的结论。比如,如果某位信用卡客户月均刷卡8次,平均每次刷卡金额800元,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,得到的真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
2、精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
3、风险管理与风险控制
在风险管理和控制方面包括中小企业贷款风险评估和欺诈交易识别等手段
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如从一个不经常出现的国家为一个特有用户转账或从一个不熟悉的位置进行在线交易)进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
4、运营优化
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
Ⅳ 互联网金融风控模型一般是如何搭建的
风控模型是在良好的建立风控体系、风控评定方式、评分机制等基础上,进行有效的数据分析及评分体系,就是建立常用的风控模型方式。目前来看,国内的互联网金融平台搭建风控模型主要有两种方式:一是自己搭建,二是直接使用三方供应商。比如目前互联网金融公司广泛使用的杭州同盾的风控产品和服务。当然,更多的互联网金融公司都会选择将两者结合起来,优化模型,提升效果。
Ⅳ 大数据如何助力金融机构搭建风控模型
"MobTech是一家大数据智能科技公司,为金融机构提供不同场景下的解决方案。拿小额专贷款的案例来看,他属们的一站式风控建模大数据平台,提供数据匹配,特征筛选,模型迭代,自定义模型开发功能,模型管理部署,自动化模型上线API输出等产品服务;提供针对小额借贷,消费金融、车贷等场景的成熟特征,可定制化各类场景衍生特征;覆盖90%android设备。
可在云端轻松构建出独属于自己的数据智能解决方案,也可通过私有化部署,加强数据的安全性。
Ⅵ 阿里小贷是基于大数据的金融服务平台模式么
是的,基于大数据。
延伸(来自公开):
14年2月20日,阿里金融旗下阿里小贷首次向外界透露了其独特的大数据授信审贷模型——水文模型。
水文模型的学术定义是将自然系统符号化,通过数学模型模拟水文现象。
而阿里小贷的水文模型,可以理解为建立庞大的数据库,不仅包括贷款客户自身长期的数据变化,还有参考同类企业的数据情况,以这些数据为依据,通过数学方法以及各种参数,判断客户未来的情况。
最终在阿里小贷业务决策中,水文模型将为公司决策层提供客观的分析和建议,并对业务形成优化。
举例来说,如果某个店铺的旺季是夏天,每年夏天销售都大幅增长,那么每年夏天,这个店铺对外投放额度也就会上升。通过阿里小贷的水文模型,可以按照历史数据,判断出这一店铺在这一时期的资金需求。
同时,对比该店铺其他时间的数据,判断出该店铺各个时段的资金需求,从而向店铺给出恰当的贷款。
相反,如果不进行对比,只是以夏天销售旺季的数据作为依据,那很可能为该店铺提供过多资金。
在水文模型的帮助下,阿里小贷迅速发展,2014年2月,阿里小贷累计投放贷款超过1700亿元,服务小微企业超过70万家,不良率小于1%。其中,2013年新增贷款1000亿元。
不过阿里的水文模型可能只是用于阿里这样的互联网金融公司,对传统小额贷款公司来说,这一模型有一定壁垒。
阿里小贷主要是淘宝贷款和阿里贷款,提供的服务主要是淘宝(天猫)信用贷款、订单贷款以及阿里信用贷款,和传统小额贷款公司不同,阿里的客户主要是淘宝、阿里巴巴上的店铺,由于这些店铺通过淘宝和阿里巴巴平台经营,所以阿里小贷可以轻易获得客户的历史数据。
大数据的优势,可能只有网络、腾讯这样同一级别的互联网巨头可以媲美。目前网络小贷公司也已在2013年9月获批,服务对象优先考虑网络推广的客户;腾讯旗下财付通的财付通小贷于2013年11月获批,财付通小贷目标客户是腾讯旗下电商企业。
网络和腾讯本身互联网基因以及旗下小贷公司的目标客户,决定了他们可以和阿里小贷一样建立完善的数据库,并建立大数据模型。这是传统小额贷款公司所不具备的。
或许当互联网小贷公司建立完备的大数据模型以后,一场小额贷款的互联网VS实体公司的战役将展开。
Ⅶ SWOT分析是金融数据模型吗
那swti分析师数据金融的一个模型吗我觉得这应该是的而且你可以在网上进行一个数据的一个分析哦
Ⅷ 如何用大数据分析金融数据
任何数据分析的前提是首先要理解业务模型,从你的金融数据是怎么产生的,包括回哪些指标哪些数据,你的答分析是要为什么业务服务的,也就是你的目的。比如你分析金融数据的目的是要找出最有价值的金融产品,还是最有价值的客户,还是寻找最有效的成本节约途径等
在弄清楚你的分析目的,和理解清楚你的业务模式等之后,再考虑你需要采用哪些数据,采用什么方法来进行分析,这才涉及到如何进行具体的分析过程。
从整个大数据分析来看,前期的业务理解和数据整理大概要耗费一大半的精力和时间,弄清楚前期,后期的分析则会很快。