导航:首页 > 金融投资 > 金融机构和数据公司的融合

金融机构和数据公司的融合

发布时间:2021-04-19 08:16:52

① 银行或金融单位的数据分析岗需要具备什么能力

最重要还是数据治理和数据分析的能力!

近年来,随着大数据产业的蓬勃发展,企业和政府对于自身数据资产的价值也产生了重新的认识。但遗憾的是数据本身并不能直接产生价值。当我们想利用数据产生价值的时候,很多问题都会暴露出来,比如:数据标准缺失,数据源头不清晰,数据质量缺乏监管等。这就要求我们要有统一的数据标准和良好的数据质量来构成数据价值实现的基础。而数据治理恰是保障这一基础的存在。

国际数据管理协会(DAMA)对数据治理给出的定义是:数据治理是对数据资产管理行使权力和控制的活动集合。它是一个管理体系,包括组织、制度、流程、工具。

在国内企业的实际应用中,一般将数据治理和数据管理综合考虑,认为数据治理是将数据作为组织资产而展开的一系列的集体化工作,包括从组织架构、管理制度、操作规范、信息技术应用、绩效考核支持等多个维度对组织的数据模型、数据架构、数据质量、数据安全、数据生命周期等方面进行全面的梳理、建设以及持续改进的过程。

五、 数据和AI中台

随着金融业正在迈入第四个重大发展阶段--数字化时代,给各金融机构带来了发展机遇,同时也伴随着严峻的挑战。如何解决数据孤岛、新应用与老系统结合难?现有IT能力不足以支撑业务的快速变化?数据调用方式多样且标准不统一质量差?以及数据资源未被挖掘数字化能力得不到释放等问题,是企业面临的共同难题。数据集成和数据资产管理是解决这些问题的有效途径之一。

本课程将从如何进行有效的数据集成、各种数据平台建设介绍、如何有效开展数据治理,以及数据资产管理与数据中台的建设这四个大的方面进行开展。帮助企业在数字化进程中快速建立系统间的数据集成体系,支撑用户数据集成应用的快速实现;提供完善数据管理体系和有效的完成数据整合方案,支撑起上层数据的挖掘、分析应用;对企业的发展战略和业务创新提供有效的数据支撑,洞察企业的运营状态和市场趋势等,提高企业新业务灵活性,创建数据应用敏捷环境。

② 大数据如何助力银行业金融机构舆情防控

金融企业运用大数据和机器学习算法,对欠款客户进行人群聚类并根据聚类的结果识别骗贷、恶意欠款、恶意透支、盗刷盗用、对交易有疑问拒绝还款、经济状况恶化无力还贷、遗忘还贷等多种欠款类型;从而准确预测客户的还款概率和金额,从而进行催收策略评估,最大限度降低催收成本。
中国建设银行资产总行风险管理部/资产保全部副总经理谭兴民曾详尽分析大数据何以帮助银行提高征信水平和风险管控能力:
首先,一站式征信平台可以进行贷前客户甄别。目前,银行查询客户的情况既费时、费力,又增加银行费用,而利用企业的一站式征信平台,则可以最大限度地节省银行的人力、物力及时间,并确保数据有效、及时、准确。
其次,风险量化平台可以助力贷后风险管控。平台基于企业日常经营数据,结合平台数据模型,采用动态、实时的云端数据抓取技术,对企业的发展进行分析和评测,给出风险量化分数,并第一时间发现企业的生产经营异动,在风险触发前3到6个月预警,使银行等金融机构能够及时采取相应措施,防止和减少损失发生。
同时,利用“企业族谱”查询,对不良贷款进行监控。如一些企业通过关联交易转移利润、制造亏损的假象,为不偿还银行贷款寻找理由;或者通过关联交易制造虚假业绩,为继续获得银行贷款提供依据,这些假象通过关联交易查询,都可以很快发现蛛丝马迹,让企业造假暴露原形,可防止银行上当受骗。
大数据风控相对于传统风控来说,建模方式和原理其实是一样的,其核心是侧重在利用更多维的数据,更多互联网的足迹,更多传统金融没有触及到的数据。比如电商的网页浏览、客户在app的行为轨迹、甚至GPS的位置信息等,这些信息看似和一个客户是否可能违约没有直接关系,但实则通过大量的数据累积,能够产生出非常有效的识别客户的能力。
在运行逻辑上,大数据风控不强调较强的因果关系,看重统计学上的相关性是大数据风控区别于传统金融风控的典型特征。传统金融机构强调因果,讲究两个变量之间必须存在逻辑上能够讲通因果。
在数据维度这个层级,传统金融风控和大数据风控还有一个显著的区别在于传统金融数据和非传统金融数据的应用。传统的金融数据包括上文中提及的个人社会特征、收入、借贷情况等等。而互金公司的大数据风控,采纳了大量的非传统金融数据。
相对于传统金融机构,互金公司扩大了非传统数据获取的途径,对于新客户群体的风险定价,是一种风险数据的补充。当然,这些数据的金融属性有多强,仍然有待验证。
巨头优势明显,并不代表创业公司的路已被堵死。大公司不可能面面俱到,布局各种场景。在互联网巨头尚未涉及的领域,小步快跑,比巨头更早的抢下赛道,拿到数据,并且优化自己的数据应用能力,成为创业公司杀出重围的一条路径。

③ 去互联网企业之后金融机构不断尝试和探索大数据纷纷布局多家保险企业开始应用

很多单位都应用大数据

④ 如何通过产融结合实现产业的更好发展和金融资本的增值

第一,产融一体化。金融资本与产业资本的一体化是产融结合的新趋势。银行与大型的企业之间形成一体化的集团公司。这种产融结合能够促使企业之间融合程度大幅度提高,也能够促使企业逐步朝着外向型经济发展。但是这种方式所占据的比例极少。一方面,大型企业数量有限,企业与金融机构的大融合也很容易导致垄断。因此,产融一体化的则一般表现为一核多星式的发展形式。大银行与多个企业联合,共同投资于某个领域的形式更为多见。第二,产融相互补充、融合。产业资本与金融资本之间相互补充,产融之间相互为对方提供所需的产品或者服务,以实现金融与企业之间的相互支持。第三,金融机构投资。投资银行多见于西方发达国家。我国基本没有投资银行,我国的政策性银行只能提供政策性融资服务,而商业银行的投资也受到大量政策限制。第四,非银行金融机构投资。我国的非银行金融机构与产业之间相互融合,具有一定的发展空间。{中国人民大学集团管控班根据以往培训经验分析}

⑤ 金融机构有哪些信息化,大数据需求

数据大集中
数据大集中是一个过程,之前整个银行体系都在分行,包括证券公司也是如此。这些金融机构并没有集中的数据中心概念,所以他们先做了数据大集中。
数据仓库
数据仓库是在数据大集中的基础上,提升、改善了数据的质量。
报表
在上面两步的基础上,做了两个报表:一个是监管报表,另一个是内部管理报表。
决策支持
决策支持是基于报表而形成的系统。但是,最后形成的决策支持系统扮演的角色并不是全局性的。比如,针对风险部门的是风险数据仓库,针对业务部的是客户数据仓库,所以在金融信息化过程中,以上四个方面还是部分处于分离的状态。
数据整合
无论做什么样的分析,数据质量是最重要的。如果数据质量差,很多事情都做不了。
公开数据现在越来越开放,比如说工商数据、征信数据。所以我觉得很多公开数据的运用,确实为数据分析提供了非常好的基础。
智能金融的尝试
为什么用尝试二字,因为我还是持一个比较保守的观点。就智能金融而言,现在的数据挖掘技术与人工智能技术还是不够的,但是我相信科技的不断发展肯定会解决这个问题。我一直坚信一个观点就是:以后绝对不会存在物理上云的概念。再过十年或者二十年所有的东西都是云,这就是趋势,是你没有办法改变的。我觉得智能金融或者大数据是一个趋势,是一个没有办法去改变、没有余地可讨论的趋势。

⑥ 大数据技术在金融行业有哪些应用前景

大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个版金融行业。预计权未来5到10年,金融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。

⑦ 大数据怎样影响着金融业

大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。

正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。

中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。

首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。


其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。


第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。

当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。

一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。

二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。

三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。

应该怎样将大数据应用于金融企业呢?

尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。

(一)推进金融服务与社交网络的融合

我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。

(二)处理好与数据服务商的竞争、合作关系

当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。
(三)增强大数据的核心处理能力

首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。

(四)加大金融创新力度,设立大数据实验室

可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。

(五)加强风险管控,确保大数据安全。

大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。

⑧ 新技术与金融业进一步融合应当具备哪些属性

依托于高速发展的移动支付、大数据、云计算等互联网技术,能在更广泛的范围内方便快捷地将资金需求者与资金提供者联系起来,但带有创新性质的金融模式、金融现象不是简单地在金融中加入互联网技术因素,技术的进步只是新金融业态的基础,更为重要的是,具有开放、平等、共享、去中心化、去媒介等属性的新的金融业态,能一方面改变我国广大的中小微企业在传统金融市场、资本市场得不到融资的困境,一方面改变投资门槛高,小额投资渠道匮乏的现状,使金融回归本质,实现其本应具有的资金融通、资源配置的功能。

⑨ 怎么通过大数据提升金融机构营销效率

行业内的金融数据解决方案供应商Mo‌bT‌ech,通过自有庞大数据结合金融机构一方数据得出用版户属性和App行为倾权向,并通过机器学习算法和机器学习模型做出评估,在营销前判别客户意向,改善营销规划。例如,高价值用户(80-100分)电话&短信交替触达;高价值沉默(60~79分)精准广告推荐高质量产品;低价值活跃用户(30~59分)优惠促销活动大力找回;低价值沉默用户(30分以下)暂时不做营销投入。

⑩ 互联网金融进入融合打造综合平台新时期可以分为几个阶段

“互联网+金融”在中国的发展路径大体上可以分为以下四个阶段。一是通过回互联网平台答建立虚拟渠道。互联网企业通过其渠道提供金融业务,如支付宝等;传统金融企业也建立互联网渠道,如银行开设网上银行。二是通过新型信息技术拓展新的金融服务。互联网企业通过其大数据技术开拓新的产品和服务,如阿里开展的电商小贷。三是互联网企业获取金融牌照提供金融服务。前两个阶段互联网企业的资金来源是银行等传统金融机构。这一阶段互联网企业将申请金融牌照,实现对资金流的控制,如银行、证券牌照。四是互联网企业与金融企业融合打造综合平台。互联网企业涉足金融领域的同时,传统金融机构大力触网,实现互联网企业和传统金融机构的融合发展,双方将通过价值链上的深度协作,实现产品服务的创新。

阅读全文

与金融机构和数据公司的融合相关的资料

热点内容
制作股票软件 浏览:958
资金内部控制制度 浏览:444
信托兑付困难 浏览:986
外汇赠金开户 浏览:671
项目融资规则 浏览:313
小赢理财定期怎么样 浏览:950
银行贷款调查表 浏览:809
2019深港通交易日 浏览:998
珠海横琴贵金属交易所 浏览:298
投资创始人 浏览:801
田洪良老师外汇 浏览:448
黄金鸽子价格一般 浏览:836
搜宜贷理财 浏览:343
工行贵金属最多可以持仓多长时间 浏览:655
招行抵押贷款提前还款 浏览:870
宗申融资租赁 浏览:933
好讲台融资 浏览:290
四川长虹持股基金 浏览:830
金鹰主题基德邦基金总经理 浏览:666
莫顿外汇金融案真相 浏览:590