『壹』 如何用大数据分析金融数据
任何数据分析的前提是首先要理解业务模型,从你的金融数据是怎么产生的,包括回哪些指标哪些数据,你的答分析是要为什么业务服务的,也就是你的目的。比如你分析金融数据的目的是要找出最有价值的金融产品,还是最有价值的客户,还是寻找最有效的成本节约途径等
在弄清楚你的分析目的,和理解清楚你的业务模式等之后,再考虑你需要采用哪些数据,采用什么方法来进行分析,这才涉及到如何进行具体的分析过程。
从整个大数据分析来看,前期的业务理解和数据整理大概要耗费一大半的精力和时间,弄清楚前期,后期的分析则会很快。
『贰』 如何分析互联网金融产品的大数据
软件开发和互联网金融都是相对饱和的了。 而随着国家对大数据的重视,大数据分析方面的需求日益凸显。 整体就业市场,大数据分析师处于巨大的缺口,未来各行各业对于大数据的运用必然常规化。
『叁』 现在互联网金融这么火,像大数据那些专业是怎么运用的
说到运用啊,楼主你知道“信诚人寿悦生活爱家行动”活动不,就是和堂传媒内运用了多屏互动手段和大数据容手段。以40000+的有效用户数据打破如今互联网金融行业营销记录,也开创了大数据等技术运用的先河,可牛啦。
『肆』 如何进行互联网金融运营数据的分析
做运营必须要对数据敏感,以下指标需要关注:
1、用户注册数,首先你要知内道你的注册数据
2、注容册成本,就是单个用户成功注册的成本
3、投资成本,就是注册用户到投资的成本
4、复投率,这个很重要,投资人数再多,如果没有复投意义不大,因为拉新的成本比留住老用户要大的多。
5、ROI,其实说了这么多,企业管理者就看重一个指标就是投资回报率,衡量一个推广渠道的优劣,这个是核心指标
知道了哪个渠道的ROI最高,就可以对你的推广策略做参考,这样就能形成良性循环。
『伍』 互联网金融借力大数据玩转风险控制
互联网金融借力大数据玩转风险控制
近两年,金融行业内竞争在网络平台上全面展开。大数据时代,这种竞争说到底就是“数据为王”。为什么大数据在互联网金融领域扮演着如此重要的角色?业内人士认为,“互联网+金融”具有共享性,提供了“大数据”和更充分的信息,即通过更完善的价格信号,帮助协调不同经济部门非集中化决策。
信息占据核心地位
信息占金融市场核心地位。金融市场是进行资本配置和监管的一种制度安排,而资本配置及其监管从本质上来说是信息问题。因此,金融市场即进行信息的生产、传递、扩散和利用的市场。
在“互联网+金融”时代,信息的传递和扩散更加便捷,信息的生产成本更为低廉,信息的利用渠道和方式也愈发多元化,从而越来越容易实现信息共享。这种共享不仅包含着各类不同金融机构之间的信息共享,而且包含着金融机构与其他行业之间的信息共享、金融机构和监管机构及企业间的共享等。
信息共享并由此形成的“大数据”,降低了单个金融机构获得信息、甄别信息的成本,提高了信息利用的效率,使信息的生产和传播充分而顺畅,从而极大地降低了信息的不完备和不对称程度。“大数据”不仅使投资者可以获取各种投资品种的价格及影响这些价格的因素的信息,而且筹资者也能获取不同的融资方式的成本的信息,管理部门能够获取金融交易是否正常进行、各种规则是否得到遵守的信息,使金融体系的不同参与者都能作出各自的决策。
正确看待大数据征信
互联网金融的发展带火了P2P市场,也折射出风控体系建设的缺失。P2P跑路现象主要原因就是风控缺失,体现在“重担保、轻风控”和“重线上风控、轻线下调查”。
当前,多数P2P平台“重担保、轻风控”的思路是不正确的,担保是外界因素,风控是内在因素,一味强调用外在的因素而不解决自身的问题,不可能实现良好运转。互联网金融的风险管理不在规则之中,而在互联网和金融双重叠加的对象之中,其最基本的风险边界应是保证投资者的资产安全。守住了安全底线,这些平台才能健康成长。所以,P2P平台根本的安全底线还在于加强自身对象的风控。
另一方面,风控分为贷前、贷中、贷后风控。目前有些P2P平台从最开始的贷前风控就缺失,贷前风控最重要的是要实现“线下调查”,即通过线下实地走访和考察,对客户信息进行交叉验证和真实性验证,包括对借款人银行流水、征信报告、财产证明、工作证明等的审查,通过审查评估借款人还款能力。这些线下风控是不可或缺的,不能迷信或过分夸大“互联网+”的效率和普惠,线上的大数据和线下的实地考察必须结合。
基于大数据、个人征信的风控手段已有很多,大数据征信是实现P2P风控的创新路径。但是也需要正确看待,既不能要求大数据征信一步登天,一下子带来质的改变;也不能风声鹤唳,一有创新就以各种名义围追堵截,而需要给予更多理性的包容和试错的空间,在渐进创新中不断完善大数据征信体系。
目前存在的困难:
一是数据的虚拟性和“信息噪音”。虽然大数据及其分析提高了信息获取的数量和精度,但由于虚拟世界中信息大爆炸造成的“信息噪音”,导致交易者身份、交易真实性、信用评价的验证难度更大,反而可能在另一层面更强化信息不对称程度,也更容易存在信息垄断。
二是信用数据关联的不确定性。信用数据是多样化的,包括朋友信用、爱情信用、事业信用等。所谓忠孝不能两全,一个对朋友忠诚的人不一定对事业忠诚。对事业或工作忠诚,也不一定能说明他的金融信用好。大数据通过日常信用来判断金融信用会出现偏差。
三是“数据孤岛”不能实现数据共享。互联网平台具有强烈的规模效应,平台越大越容易产生数据,越容易使用数据。例如,阿里小贷主要通过卖家累计的海量交易信息及资金流水,也可通过大数据的分析在几秒内完成对商家的授信。但是,阿里小贷的数据,不可能提供给其他公司使用。因此,下一步应推动数据的整合和共享。
玩转大数据风控系统
传统的风控模式更多关注的是静态风险,对风险进行预判。而P2P市场让越来越多的传统金融企业转型互联网金融,大数据技术要对风险进行实时把握,要做到两点:大数据和云计算结合以及大数据的流处理模式。
大数据和云计算结合,实现了实时监控。云计算为大数据实时把握提供了硬件基础,可以实现秒级的数据采集、分析和挖掘。流处理模式实现了静态风险和动态风险的有效结合。一种人习惯先把信息存下来,然后一次性地处理掉,也叫批处理,如定期处理过期邮件;另一种人喜欢信息来一点处理一点,无用信息直接过滤掉,有用的存起来。后者就是流处理的基本范式,实现了实时监控。
怎样才能针对企业自身的发展和业务方向,玩转大数据风控系统,使其发挥到最大作用?我认为,要关注“大众数据”。要意识到互联网“长尾效应”的作用,互联网环境下“得大众者得天下”,关注大众数据,要了解大众心态,在归属感、成就感和参与感上下功夫。
还要将业务驱动转向数据驱动。理解数据的价值,通过数据处理创造商业价值,看似零散的数据背后寻找消费逻辑。此外,还应改造公司数据相关的IT部门,将其从“成本中心”转化为“利润中心”,充分认识大数据是核心竞争力,重视其挖掘和预测的能力。
当然,实时大数据风控还需要很多方面的探索,如何借助大数据建立全生命风控体系,形成贷前、贷中、贷后流程管理系统和决策系统。另外,还需加强信用数据相关性研究和量化模型的开发,金融信用(主要指借贷数据)可获得性比日常信用数据难,以金融信用为中心,通过日常信用,构建个人信用评估体系。
『陆』 大数据对互联网金融的发展有什么作用
自互联网金融被广而告之以后,大家就一直在被灌输大数据在互联网金融发展中的作用巨大,甚至最近更有专家说大数据是互联网金融发展的加速器。但是似乎并没有一个系统的说法,大数据具体有什么用,我们只知道互联网金融确实是其中的获益者之一,下面且听听通金魔方分析师的见解。
我们首先从互联网金融的含义生对大数据有个简单的了解。正如互联网金融之父谢平所言,所谓的互联网金融,并非是简单的将互联网和金融进行叠加。
正确的理解应该是基于互联网应用的特殊技术,推动了全新的商业模式,产品服务,对金融领域产生的颠覆性变革。在这其中,大数据则充当了很重要的推手。接下来我们来看一下大数据在互联网金融发展中的作用体现。
精准的用户分析
大数据的首要作用就是在于它能够对用户进行准确的分析,然后帮助互联网金融找到合适的目标用户,进而实现精准营销。
在目前的互联网金融领域,很多新兴的企业,大多以做贷款或者金融衍生产品为主。其主打的卖点主要在于较高的投资收益或者较低的手续费优惠。但是在竞争日益加剧的市场环境下,由于不能保证资金流稳定,或者客户粘性而倒闭的企业随处可见。
据相关数据显示,截止2013年底,中国境内共有450家P2P公司,其中有的甚至在创立几天内即宣布倒闭。在这样的基础之上,实现精准营销才是这些企业唯一的出路,这也正是大数据的作用所在。
虽然互联网金融的发展仍然处于起步阶段,但是却已经有了相当丰富的成熟案例。比如通过定向技术查看用户近期浏览过的理财网站,通过关键词,浏览数据建立用户模型,从而实现优化产品的实时推荐频度,以便最大限度的锁定有效用户等。
帮助金融企业风险防控
除了以上的首要作用之外,大数据还能够帮助金融企业加强风险的可控性。在精细化管理方面助推了互联网金融,尤其是信贷服务的发展。
比如通过对大量网络交易及行为数据的分析,可以为用户的信用评估提供可靠的依据。这些信用评估可以帮助金融企业在用户的还款意愿和能力方面做出较为准确的结论,以便决定是否继续为该用户提供快速授信或者现金分期等服务。从而最大限度的降低金融企业的业务风险。
当然,我们对于个人用户或者企业用户信用好坏的评定取决于诸多因素,但是我们也可以从这诸多因素中找到相应的数据。比如我们要寻找这个用户的整体收入,固定资产,性格特点甚至是行为习惯等,那么我们就可以从网上银行,电商,社交网络,甚至招聘和婚介网站等地方获取。
大数据的作用在这里面得以体现的最关键的一点就是,这些所谓的数据往往都是以动态变量的形式存在的,而我们要想以此为依据获得准确的信用评级,则更要倚重于大数据的持续分析功能。
通过上面的分析,我们也不得不承认大数据在互联网金融发展中作用巨大,只不过在现在这个互联网金融的起步阶段,大数据作用的发掘仍不算完整,我们只能一步一步的在不断的发展中发现它的好。
『柒』 常用的互联网金融大数据风控方式有哪些
1:验证借款人信息
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以通过借助银联数据来验证银行卡号和姓名。
其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
2:大数据分析提交的信息
大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷一般都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相同、单位名称相同、甚至居住的楼层和号码都相同。
3:分析客户的消费信息
从客户的电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。
4:参考客户的社会属性和行为进行评估
参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高。经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。
5:调查客户是否进入黑名单
市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。
涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。
『捌』 互联网金融模式的大数据金融
大数据金融是指依托于海量、非结构化的数据,通过互联网、云计算等信息化方式回对其数据进行专业答化的挖掘和分析,并与传统金融服务相结合,创新性开展相关资金融通工作的统称。大数据金融扩充了金融业的企业种类,不再是传统金融独大,并创新了金融产品和服务,扩大了客户范围,降低了企业成本。大数据金融按照平台运营模式,可分为平台金融和供应链金融两大模式。两种模式代表企业分别为阿里金融和京东金融。
『玖』 大数据是互联网金融的核心,它在互联网金融有什么好处
一、验证借款人身份
二、分析提交的信息来识别欺诈
三、分析客户线上申请行为来识别欺诈
四、利用黑名单和灰名单识别风险
五、利用移动设备数据识别欺诈
六、利用消费记录来进行评分
七、参考社会关系来评估信用情况
八、参考借款人社会属性和行为来评估信用
九、利用司法信息评估风险
『拾』 软件开发 大数据分析 互联网金融哪个好
软件开发袭和互联网金融都是相对饱和的了。
而随着国家对大数据的重视,大数据分析方面的需求日益凸显。
整体就业市场,大数据分析师处于巨大的缺口,未来各行各业对于大数据的运用必然常规化。
--广东韵为大数据分析---