1. 金融机构信息安全包括哪些方面
(1) 信息泄露:保护的信息被泄露或透露给某个非授权的实体。
(2) 破坏信息的完整性:数据被非授权地进行增删、修改或破坏而受到损失。
(3) 拒绝服务:信息使用者对信息或其他资源的合法访问被无条件地阻止。
(4) 非法使用(非授权访问):某一资源被某个非授权的人,或以非授权的方式使用。
(5) 窃听:用各种可能的合法或非法的手段窃取系统中的信息资源和敏感信息。例如对通信线路中传输的信号搭线监听,或者利用通信设备在工作过程中产生的电磁泄露截取有用信息等。(6) 业务流分析:通过对系统进行长期监听,利用统计分析方法对诸如通信频度、通信的信息流向、通信总量的变化等参数进行研究,从中发现有价值的信息和规律。
(7) 假冒:通过欺骗通信系统(或用户)达到非法用户冒充成为合法用户,或者特权小的用户冒充成为特权大的用户的目的。我们平常所说的黑客大多采用的就是假冒攻击。
(8) 旁路控制:攻击者利用系统的安全缺陷或安全性上的脆弱之处获得非授权的权利或特权。例如,攻击者通过各种攻击手段发现原本应保密,但是却又暴露出来的一些系统“特性”,利用这些“特性”,攻击者可以绕过防线守卫者侵入系统的内部。
(9) 授权侵犯:被授权以某一目的使用某一系统或资源的某个人,却将此权限用于其他非授权的目的,也称作“内部攻击”。
(10)抵赖:这是一种来自用户的攻击,涵盖范围比较广泛,比如:否认自己曾经发布过的某条消息、伪造一份对方来信等。
(11)计算机病毒:这是一种在计算机系统运行过程中能够实现传染和侵害功能的程序,行为类似病毒,故称作计算机病毒。
(12)信息安全法律法规不完善:由于当前约束操作信息行为的法律法规还很不完善,存在很多漏洞,很多人打法律的擦边球,这就给信息窃取、信息破坏者以可趁之机。
2. 金融数据的尖峰厚尾特征是什么意思
金融数据的尖峰厚尾特征是相比较标准正态分布来说的,标准正态分布的偏度为0,峰度为3,通常做实证分析时,会假设金融数据为正态分布,这样方便建模分析。
但是实证表明,很多数据并不符合正态分布,而更像尖峰厚尾,就是峰度比3大,两边的尾巴比正态分布厚,没有下降得这么快。
厚尾分布主要是出现在金融数据中,例如证券的收益率。 从图形上说,较正态分布图的尾部要厚,峰处要尖。
直观些说,就是这些数据出现极端值的概率要比正态分布数据出现极端值的概率大。因此,不能简单的用正态分布去拟合这些数据的分布,从而做一些统计推断。一般来说,通过实证分析发现,自由度为5或6的t分布拟合的较好。
(2)金融机构数据平台表现为扩展阅读:
基金收益率不服从正态分布,存在显著的尖峰厚尾特性,我国基金市场还不是有效市场。人民币汇率收益率波动有集群性效应,不符合正态分布,有尖峰厚尾的特点。结果表明稳定分布能更好的拟和中国股票收益率的实际分布,稳定分布较好的处理中国股票市场中的“尖峰尾”现象。
但很多资本市场上的现象无法用EMH解释,如证券收益的尖峰厚尾,证券市场的突然崩溃,股价序列的长期记忆性等。对期货价格数据进行统计分析,发现期货价格具有“尖峰厚尾”特性。实证结果表明:我国股价波动具有尖峰厚尾特征、异方差性特征和波动的持续性和非对称特征。
而股票市场的收益率从分布的角度看,并不服从标准的正态分布,而是呈现出一种“尖峰、厚尾”的特征。
3. 金融机构应该采用什么等级的数据中心
至少是等级保护三级的数据中心
等保是国家标准
4. 一些金融机构的数据会公示在哪个网站
数据大集中 数据大集中是一个过程,之前整个银行体系都在分行,包括证券回公司也是如此。这些答金融机构并没有集中的数据中心概念,所以他们先做了数据大集中。 数据仓库 数据仓库是在数据大集中的基础上,提升、改善了数据的质量。
5. 请举例金融机构银行大数据的应用有哪些
1、精准营销: 互联网时代的银行在互联网金融的冲击下,迫切的需要掌握更多用户信息内,继而构建容用户360度立体画像,即可对细分的客户进行精准营销、实时营销等个性化智慧营销。
2、风险控制: 应用大数据技术,可以统一管理银行内部多源异构数据与外部征信数据,可以更好的完善风控体系。内部可保障数据的完整性与安全性,外部可控制用户风险。
3、改善经营:通过大数据分析方法改善经营决策,为管理层提供可靠的数据支撑,使经营决策更加高效、敏捷,精确性更高。
4、服务创新:通过对大数据的应用,改善与客户之间的交互、增加用户粘性,为个人与政府提供增值服务,不断增强银行业务核心竞争力。
6. 大数据如何助力银行业金融机构舆情防控
金融企业运用大数据和机器学习算法,对欠款客户进行人群聚类并根据聚类的结果识别骗贷、恶意欠款、恶意透支、盗刷盗用、对交易有疑问拒绝还款、经济状况恶化无力还贷、遗忘还贷等多种欠款类型;从而准确预测客户的还款概率和金额,从而进行催收策略评估,最大限度降低催收成本。
中国建设银行资产总行风险管理部/资产保全部副总经理谭兴民曾详尽分析大数据何以帮助银行提高征信水平和风险管控能力:
首先,一站式征信平台可以进行贷前客户甄别。目前,银行查询客户的情况既费时、费力,又增加银行费用,而利用企业的一站式征信平台,则可以最大限度地节省银行的人力、物力及时间,并确保数据有效、及时、准确。
其次,风险量化平台可以助力贷后风险管控。平台基于企业日常经营数据,结合平台数据模型,采用动态、实时的云端数据抓取技术,对企业的发展进行分析和评测,给出风险量化分数,并第一时间发现企业的生产经营异动,在风险触发前3到6个月预警,使银行等金融机构能够及时采取相应措施,防止和减少损失发生。
同时,利用“企业族谱”查询,对不良贷款进行监控。如一些企业通过关联交易转移利润、制造亏损的假象,为不偿还银行贷款寻找理由;或者通过关联交易制造虚假业绩,为继续获得银行贷款提供依据,这些假象通过关联交易查询,都可以很快发现蛛丝马迹,让企业造假暴露原形,可防止银行上当受骗。
大数据风控相对于传统风控来说,建模方式和原理其实是一样的,其核心是侧重在利用更多维的数据,更多互联网的足迹,更多传统金融没有触及到的数据。比如电商的网页浏览、客户在app的行为轨迹、甚至GPS的位置信息等,这些信息看似和一个客户是否可能违约没有直接关系,但实则通过大量的数据累积,能够产生出非常有效的识别客户的能力。
在运行逻辑上,大数据风控不强调较强的因果关系,看重统计学上的相关性是大数据风控区别于传统金融风控的典型特征。传统金融机构强调因果,讲究两个变量之间必须存在逻辑上能够讲通因果。
在数据维度这个层级,传统金融风控和大数据风控还有一个显著的区别在于传统金融数据和非传统金融数据的应用。传统的金融数据包括上文中提及的个人社会特征、收入、借贷情况等等。而互金公司的大数据风控,采纳了大量的非传统金融数据。
相对于传统金融机构,互金公司扩大了非传统数据获取的途径,对于新客户群体的风险定价,是一种风险数据的补充。当然,这些数据的金融属性有多强,仍然有待验证。
巨头优势明显,并不代表创业公司的路已被堵死。大公司不可能面面俱到,布局各种场景。在互联网巨头尚未涉及的领域,小步快跑,比巨头更早的抢下赛道,拿到数据,并且优化自己的数据应用能力,成为创业公司杀出重围的一条路径。
7. 金融机构在大数据方面仍然存在 弊端
大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患
8. 几个金融机构征信业务考试的试题,求助答案。
1、2011年上线的新版个人信用报告有2011银行版、2011银行异议版、2011个人版、2011个人明细版、2011征信中心版、 社会版、政府版等七个版本。
2、企业和个人征信系统统称为“金融信用信息基础数据库”。