导航:首页 > 基金投资 > 刘徽恒越基金

刘徽恒越基金

发布时间:2021-03-19 22:44:17

❶ 5篇中国数学家的故事

1910年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。
华罗庚上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。
1936年夏,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。
华罗庚十分注意数学方法在工农业生产中的直接应用。他经常深入工厂进行指导,进行数学应用普及工作,并编写了科普读物。
华罗庚也为青年树立了自学成才的光辉榜样,他是一位自学成才、没有大学毕业文凭的数学家。他说:“不怕困难,刻苦学习,是我学好数学最主要的经验”,“所谓天才就是靠坚持不断的努力

❷ 数学家的故事~~~急急急~~~

陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。
有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?
过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。
陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。
陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。
“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。
管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。
时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。
陈景润把书收拾好,就往外走去。图书馆里静悄悄的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。
要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!
他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。
“陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。”
党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。
他打开灯,马上做起那道题目起来。

❸ 数学家的故事(要简短,300字以内)急用!!!!

1、华罗庚

华罗庚特别爱动脑,对于一些别人看来司空见惯的事,往往也表现出浓厚的兴趣,提出一些似乎希奇的问题。

有一次,他同别人一块去城郊玩耍,见一座荒坟旁有石人石马,就问比他大的同伴:“这些石人石马有多重?”同伴回答说:“这怎么能知道呢。”华罗庚却不甘心,沉思片刻,说:“以后总会有方法知道的。”

2、毕达哥拉斯

传说他是一个非常优秀的教师,他认为每一个都该懂些几何。有一次他看到一个勤勉的穷人,他想教他学习几何,因此对此人建议:如果这人能学懂一个定理,那么他就给他一块钱币。

这个人看在钱份上就和他学几何了,可是过了一个时期,这学生对几何却产生了非常大的兴趣,反而要求毕达哥拉斯教快一些,并且建议:如果老师多教一个定理,他就给一个钱币。不需要多少时间,毕达哥拉斯把他以前给那学生的钱全部收回了。

3、欧拉

瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。

于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。

周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。

4、高斯

高斯7岁那年开始上学,老师布置了一道题,1+2+3······这样从1一直加到100等于多少。高斯很快就算出了答案,起初高斯的老师布特纳并不相信高斯算出了正确答案:"你一定是算错了,回去再算算。”高斯非常坚定,说出答案就是5050。

高斯是这样算的:1+100=101,2+99=101······50+51=101。从1加到100有50组这样的数,所以50X101=5050。布特纳对他刮目相看。

5、阿基米德

国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索。阿基米德洗澡,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了!”。

阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。

随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。

❹ 恒越基金管理有限公司怎么样

恒越基金管理有限公司是2017-09-14在上海市浦东新区注册成立的有限责任公司(自然人投资或控股),注册地址位于上海市浦东新区龙阳路2277号2102室。
恒越基金管理有限公司的统一社会信用代码/注册号是91310115MA1K3W828W,企业法人BIGUOQIANG,目前企业处于开业状态。
恒越基金管理有限公司的经营范围是:公开募集证券投资基金管理、基金销售和中国证监会许可的其他业务。[依法须经批准的项目

❺ 中国成立六十周年中中国科学家的故事

祖冲之(公元429年—公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。《隋书·律历志》留下一小段关于圆周率(π)的记载,祖冲之算出π的真值在3.1415926(朒数)和3.1415927(盈数)之间,相当于精确到小数第7位,成为当时世界上最先进的成就。这一纪录直到15世纪才由阿拉伯数学家卡西打破。祖冲之还给出π的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位,在西方直到16世纪才由荷兰数学家奥托重新发现。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在天文历法方面,祖冲之创制了《大明历》,最早将岁差引进历法;采用了391年加144个闰月的新闰周;首次精密测出交点月日数(27.21223),回归年日数(365.2428)等数据,还发明了用圭表测量冬至前后若干天的正午太阳影长以定冬至时刻的方法。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,他在音律、文学、考据方面也有造诣,他精通音律,擅长下棋,还写有小说《述异记》。是历史上少有的博学多才的人物。
为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”。
祖冲之通过艰苦的努力,他在世界数学史上第一次将圆周率(π)值计算到小数点后七位,即3.1415926到3.1415927之间。他提出约率22/7和密率355/113,这一密率值是世界上最早提出的,比欧洲早一千多年,所以有人主张叫它“祖率”。他将自己的数学研究成果汇集成一部著作,名为《缀术》,唐朝国学曾经将此书定为数学课本。他编制的《大明历》,第一次将“岁差”引进历法。提出在391年中设置144个闰月。推算出一回归年的长度为365.24281481日,误差只有50秒左右。他不仅是一位杰出的数学家和天文学家,而且还是一位杰出的机械专家。重新造出早已失传的指南车、千里船等巧妙机械多种。此外,他对音乐也有研究。著作有《释论语》、《释孝经》、《易义》、《老子义》、《庄子义》及小说《述异记》等,均早已遗失。
[编辑本段]【人物生平】
从公元42O年东晋灭亡到589年隋朝统一全国的一百七十年中间,我国历史上形成了南北对立的局面,这一时期称作南北朝。南朝从公元42O年东晋大将刘裕夺取帝位,建立宋政权开始,经历了宋、齐、梁、陈四个朝代。同南朝对峙的是北朝,北朝经历了北魏、东魏、西魏 在古代,我国历法家一向把十九年定为计算闰年的单位,称为“一章”,在每一章里有七个闰年。也就是说,在十九个年头中,要有七个年头是十三个月。这种闰法一直采用了一千多年,不过它还不够周密、精确。公元412年,北凉赵厞创作《元始历》,才打破了岁章的限制,规定在六百年中间插入二百二十一个闰月。可惜赵厞的改革没有引起当时人的注意,例如著名历算家何承天在公元443年制作《元嘉历》时,还是采用十九年七闰的古法。祖冲之吸取了赵厞的先进理论,加上他自己的观察,认为十九年七闰的闰数过多,每二百年就要差一天,而赵厞六百年二百二十一闯的闰数却又嫌稍稀,也不十分精密。因此,他提出了三百九十一年内一百四十四闰的新闰法。这个闰法在当时算是最精密的了。除了改革闰法以外,祖冲之在历法研究上的另一重大成就,是破天荒第一次应用了“岁差。”根据物理学原理,刚体在旋转运动时,假如丝毫不受外力的影响,旋转的方向和速度应该是一致的;如果受了外力影响,它的旋转速度就要发生周期性的变化。地球就是一个表面凹凸不平、形状不规则的刚体,在运行时常受其他星球吸引力的影响,因而旋转的速度总要发生一些周期性的变化,不可能是绝对均匀一致的。因此,每年太阳运行一周(实际上是地球绕太阳运行一周),不可能完全回到上一年的冬至点上,总要相差一个微小距离。按现在天文学家的精确计算,大约每年相差50.2秒,每七十一年八个月向后移一度。这种现象叫作岁差。
随着天文学的逐渐发展,我国古代科学家们渐渐发现了岁差的现象。西汉的邓平、东汉的刘歆、贾逵等人都曾观测出冬至点后移的现象,不过他们都还没有明确地指出岁差的存在。到东晋初年,天文学家虞喜才开始肯定岁差现象的存在,并且首先主张在历法中引入岁差。他给岁差提出了第一个数据,算出冬至日
祖冲之继承了前人的科学研究成果,不但证实了岁差现象的存在,算出岁差是每四十五年十一个月后退一度,而且在他制作的《大明历》中应用了岁差。因为他所根据的天文史料都还是不够准确的,所以他提出的数据自然也不可能十分准确。尽管如此,祖冲之把岁差应用到历法中,在天文历法史上却是一个创举,为我国历法的改进揭开了新的一页。。祖冲之在历法研究方面的第三个巨大贡献,就是能够求出历法中通常称为“交点月”的日数。所谓交点月,就是月亮连续两次经过“黄道”和“白道”的交叉点,前后相隔的时间。黄道是指我们在地球上的人看到的太阳运行的轨道,白道是我们在地球上的人看到的月亮运行的轨道。交点月的日数是可以推算得出来的。祖冲之测得的交点月的日数是27.21223日,比过去天文学家测得的要精密得多,同近代天文学家所测得的交点月的日数27.21222日已极为近似。在当时天文学的水平下,祖冲之能得到这样精密的数字,成绩实在惊人。由于日蚀和月蚀都是在黄道和白道交点的附近发生,所以推算出交点月的日数以后,就更能准确地推算出日蚀或月蚀发生的时间。祖冲之在他制订的《大明历》中,应用交点月推算出来的日、月蚀时间比过去准确,和实际出现日、月蚀的时间都很接近。祖冲之根据上述的研究成果,终于成功制成了当时最科学、最进步的历法——《大明历》。这是祖冲之科学研究的天才结晶,也是他在天文历法上最卓越的贡献。圆周定律 著书缀术祖冲之不但精通天文、历法,他在数学方面的贡献,特别对“圆周率”研究的杰出成就,更是超越前代,在世界数学史上放射着异彩。我们都知道圆周率就是圆的周长和同一圆的直径的比,这个比值是一个常数,现在通用希腊字母“π”来表示。圆周率是一个永远除不尽的无穷小数,它不能用分数、有限小数或循环小数完全准确地表示出来。由于现代数学的进步,已计算出了小数点后两千多位数字的圆周率。圆周率的应用很广泛。尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。我国古代劳动人民在生产实践中求得的最早的圆周率值是“ 3”,这当然很不精密,但一直被沿用到西汉。后来,随着天文、数学等科学的发展,研究圆周率的人越来越多了。西汉末年的刘歆首先抛弃“3”这个不精确的圆周率值,他曾经采用过的圆周率是3.547。东汉的张衡也算出圆周率为π=3.1622。这些数值比起π=3当然有了很大的进步,但是还远远不够精密。到了三国末年,数学家刘徽创造了用割圆术来求圆周率的方法,圆周率的研究才获得了重大的进展。用割圆术来求圆周率的方法,大致是这样:先作一个圆,再在圆内作一内接正六边形。假设这圆的直径是2,那么半径就等于1。内接正六边形的一边一定等于半径,所以也等于1;它的周长就等于6。如果把内接正六边形的周长6当作圆的周长,用直径2去除,得到周长与直径的比π=6/2=3,这就是古代π=3的数值。但是这个数值是不正确的,我们可以清楚地看出内接正六边形的周长远远小于圆周的周长。如果我们把内接正六边形的边数加倍,改为内接正十二边形,再用适当方法求出它的周长,那么我们就可以看出,这个周长比内按正六边形的周长更接近圆的周长,这个内接正十二边形的面积也更接近圆面积。从这里就可以得到这样一个结论:圆内所做的内接正多边形的边数越多,它各边相加的总长度(周长)和圆周周长之间的差额就越小。从理论上来讲,如果内接正多边形的边数增加到无限多时,那时正多边形的周界就会同圆周密切重合在一起,从此计算出来的内接无限正多边形的面积,也就和圆面积相等了。不过事实上,我们不可能把内接正多边形的边数增加到无限多,而使这无限正多边形的周界同圆周重合。只能有限度地增加内接正多边形的边数,使它的周界和圆周接近重合。所以用增加圆的内接正多边形边数的办法求圆周率,得数永远稍小于π的真实数值。刘徽就是根据这个道理,从圆内接正六边形开始,逐次加倍地增加边数,一直计算到内接正九十六边形为止,求得了圆周率是3.14。把这个数化为分数,就是157/50。刘徽所求得的圆周率,后来被称为“徽率”。他这种计算方法,实际上已具备了近代数学中的极限概念。这是我国古代关于圆周率的研究的一个光辉成就。
祖冲之在推求圆周率方面又获得了超越前人的重大成就。根据《隋书·律历志》的记载,祖冲之把一丈化为一亿忽,以此为直径求圆周率。他计算的结果共得到两个数:一个是盈数(即过剩的近似值),为3.1415927;一个是朒数(即不足的近似值),为3.1415926。圆周率真值正好在盈朒两数之间。《隋书》只有这样简单的记载,没有具体说明他是用什么方法计算出来的。不过从当时的数学水平来看,除刘徽的割圆术外,还没有更好的方法。祖冲之很可能就是采用了这种方法。因为采用刘徽的方法,把圆的内接正多边形的边数增多到24576边时,便恰好可以得出祖冲之所求得的结果。盈朒 两数可以列成不等式,如:3.1415926(*)<π(真实的圆周率)<3.1415927(盈),这表明圆周率应在盈朒 两数之间。按照当时计算都用分数的习惯,祖冲之还采用了两个分数值的圆周率。一个是355/113(约等于3.1415927),这一个数比较精密,所以祖冲之称它为“密率”。另一个是了(约等于3.14),这一个数比较粗疏,所以祖冲之称它为“约率”。在欧洲,直到1573年才由德国数学家渥脱求出了355/113这个数值。因此,日本数学家三上义夫曾建议把355/113这个圆周率数值称为“祖率”,来纪念这位中国的大数学家。由于祖冲之所著的数学专著《缀术》已经失传,《隋书》又没有具体地记载他求圆周率的方法,因此,我国研究祖国数学遗产的专家们,对于他求圆周率的方法还有不同的见解。有人认为祖冲之圆周率中的“朒数”。是用作圆的内接正多边形的方法求得的;而“盈数”则是用作圆的外切正多边形的方法求得的。祖冲之如果继续用刘徽的办法,从圆的内接正六边形算起,逐次加倍边数,一直算到内接正24576边形时,它的各边长度总和只能逐次接近并较小于圆周的周长,这正多边形的面积也只能逐次接近并较小于圆面积,从此求出的圆周率为3.14159261,也只能小于圆周率的真实数值,这就是朒 数。从祖冲之的数学水平来看,突破刘徽的方法,从外切正六边形算起,逐次试求圆周率,也是可能的。如果祖冲之把外切正六边形的边数成倍增加,到正24576边形时,他所求得的圆周率应该是。3.14159270208。这个数是用外切方法求得的。由于外切正多边形各边边长的总和永远大于圆周的长度,这正多边形的面积也永远大于圆面积,所以这个数总比真实的圆周率大。用四舍五入法舍去小数点七位以后的数字,就得出盈数。
祖冲之究竟是否同时用过内接和外切这两个方法求出圆周率的朒数和盈数,是没有确切史料可以证实的。但是采用这个办法所求出的朒、盈两个数值,和祖冲之原来所求出的结果大体是一致的。所以有些数学史家认为祖冲之曾用过作圆的外切正多边形的方法求得圆周率,是很近情理的推想。尽管说法有出入,但是祖冲之曾经求得“密率”,并且明确地用上、下两限来说明圆周率这个数值的范围,是可以肯定的。在一千五百年前,他有这样的成就和认识,真值得我们钦佩。在推算圆周率时,祖冲之付出了不知多少辛勤的劳动。如果从正六边形算起,算到24576边时,就要把同一运算程序反复进行十二次,而且每一运算程序又包括加减乘除和开方等十多个步骤。我们现在用纸笔算盘来进行这样的计算,也是极其吃力的。当时祖冲之进行这样繁难的计算,只能用筹码(小竹棍)来逐步推演。如果头脑不是十分冷静精细,没有坚韧不拔的毅力,是绝对不会成功的。祖冲之顽强刻苦的研究精神,是很值得推崇的。在我国古代数学著作《九章算术》中,曾列有计算圆球体积的公式,但很不精确。刘徽虽然曾经指出过它的错误,但究竟应当怎样计算,他也没有求得解决。经祖暅刻苦钻研,终于找到了正确的计算方法。他所推算出的计算圆球体积的公式是:圆球体积=π/c D(D代表球体直径)。这个公式一直到今天还被人们采用着。指南车是一种用来指示方向的车子。车中装有机械,车上装有木人。车子开行之前,先把木人的手指向南方,不论车子怎样转弯,木人的手始终指向南方不变。这种车子结构已经失传,但是根据文献记载,可以知道它是利用齿轮互相带动的结构制成的。相传远古时代黄帝对蚩尤作战,曾经使用过指南车来辨别方向,但这不过是一种传说。根据历史文献记载,三国时代的发明家马钧曾经制造过这种指南车,可惜后来失传了。公元417年东晋大将刘裕(也就是后来宋朝的开国皇帝)进军至长安时,曾获得后秦统治者姚兴的一辆旧指南车,车子里面的机械已经散失,车子行走时,只能由人来转动木人的手,使它指向南方。后来齐高帝萧道成就令祖冲之仿制。祖冲之所制指南车的内部机件全是铜的。制成后,萧道成就派大臣王僧虔、刘休两人去试验,结果证明它的构造精巧,运转灵活,无论怎样转弯,木人的手常常指向南方祖冲之还根据春秋时代文献的记载,制了一个“欹器”,送给齐武帝的第二个儿子萧子良。欹器是古人用来警诫自满的器具。器内没有水的时候,是侧向一边的。里面盛水以后,如果水量适中,它就竖立起来;如果水满了,它又会倒向一边,把水泼出去。这种器具,晋朝的学者杜预曾试制三次,都没有成功;祖冲之却仿制成功了。由此可见,祖冲之对各种机械都有深刻的研究。祖冲之在天文、历法、数学以及机械制造等方面的辉煌成就,充分表现了我国古代科学的高度发展水平。祖冲之所以能够取得这样辉煌的成就,并不是偶然的。首先,当时社会生产正在逐步发展,需要有一定的科学成就来配合前进,因而就推动了科学的进步,祖冲之就在这时候取得了天文、数学和器械制造等方面的成绩。其次,从上古到这时候,在千百年的长时期中,已积累了不少科学成果,祖冲之就在前人创造的基础上做出了他的成绩。至于祖冲之个人的认真学习,刻苦钻研,不迷信古人,不畏惧守旧势力,不怕斗争,不避艰难,自然也都是取得杰出成就的重要原因。
祖冲之不仅是我国历史上杰出的科学家,而且在世界科学发展史上也有崇高的地位。祖冲之创造“密率”,是世界闻名的。我们应该纪念像祖冲之这样的科学家,珍视他们的宝贵遗产。在祖冲之之前,人们使用的历法是天文学家何承天编制的《元嘉历》。祖冲之经过多年的观测和推算,发现《元嘉历》存在很大的差误。于是祖冲之着手制定新的历法,宋孝武帝大明六年(公元462年)他编制成了《大明历》。大明历在祖冲之生前始终没能采用,直到梁武帝天监九年(公元510年)才正式颁布施行。《大明历》的主要成就如下:区分了回归年和恒星年,首次把岁差引进历法,测得岁差为45年11月差一度(今测约为70.7年差一度)。岁差的引入是中国历法史上的重大进步。定一个回归年为365.24281481日(今测为365.24219878日),直到南宋宁宗庆元五年(公元1199年)杨忠辅制统天历以前,它一直是最精确的数据。采用391年置144闰的新闰周,比以往历法采用的19年置7闰的闰周更加精密。定交点月日数为27.21223日(今测为27.21222日)。交点月日数的精确测得使得准确的日月食预报成为可能,祖冲之曾用大明历推算了从元嘉十三年(公元436年)到大明三年(公元459年),23年间发生的4次月食时间,结果与实际完全符合。得出木星每84年超辰一次的结论,即定木星公转周期为11.858年(今测为11.862年)。给出了更精确的五星会合周期,其中水星和木星的会合周期也接近现代的数值。求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。祖冲之经过刻苦钻研,继承和发展了前辈科学家的优秀成果。他对于圆周率的研究,就是他对于我国乃至世界的一个突出贡献。祖冲之对圆周率数值的精确推算值,用他的名字被命名为“祖冲之圆周率”,简称“祖率”。什么是圆周率呢?圆有它的圆周和圆心,从圆周任意一点到圆心的距离称为半径,半径加倍就是直径。直径是一条经过圆心的线段,圆周是一条弧线,弧线是直线的多少倍,在数学上叫做圆周率。简单说,圆周率就是圆的周长与它直径之间的比,它是一个常数,用希腊字母“π”来表示,为算式355÷113所得。在天文历法方面和生产实践当中,凡是牵涉到圆的一切问题,都要使用圆周率来推算。如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。我在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。西汉末年刘歆在为王莽设计制作圆形铜斛(一种量器)的过程中,发现直径为一、圆周为三的古率过于粗略,经过进一步的推算,求得圆周率的数值为3.1547。东汉著名科学家张衡推算出的圆周率值为3.162。魏晋之际的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术。他设圆的半径为1,把圆周六等分,作圆的内接正六边形,用勾股定理求出这个内接正六边形的周长;然后依次作内接十二边形,二十四边形……,至圆内接一百九十二边形时,得出它的边长和为6.282048,而圆内接正多边形的边数越多,它的边长就越接近圆的实际周长,所以此时圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。在割圆术中,刘徽已经认识到了现代数学中的极限概念。他所创立的割圆术,是探求圆周率数值的过程中的重大突破。后人为纪念刘徽的这一功绩,把他求得的圆周率数值称为“徽率”或称“徽术”。祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间。他成为世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。祖冲之提出的“密率”,也是直到一千年以后,才由德国 称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的。这是有意的捏造。记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方面卓越的成就。那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了刘徽所创立和首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年,苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为“祖冲之环形山”。祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过度量衡,并用最新的圆周率成果修正古代的量器容积的计算。古代有一种量器叫做“釜”,一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。他还重新计算了汉朝刘歆所造的“律嘉量”(另一种量器,与上面提到的 都是类似于现在我们所用的“升”等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值。为人们的日常生活提供了方便。以后,人们制造量器时就采用了祖冲之的“祖率”数值。祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数,并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考;如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形。祖冲之以一忽(一丈的一亿分之一)为单位,求直径为一丈的圆的周长,求得盈数为3.1415927、肭数为3.1415926,圆周率的真值介于盈肭两数之间。《隋书》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽的割圆术,但也有别的多种猜测。这两个近似值准确到小数第7位,是当时世界上最先进的成就。直到一千多年以后,15世纪阿拉伯数学家卡西和16世纪法国数学家F.韦达才得到更精确的结果。祖冲之确定了π的两个渐近分数,约率22/7和密率355/113。其中密率355/113(≈3.1415929)西方直到16世纪才由德国人V.奥托发现。它是三个成对奇数113355再折两段组成,优美、规整、易记。为了纪念祖冲之的杰出贡献,有些外国数学史家把圆周率π的密率叫做“祖率”。祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。祖冲之还与他的儿子祖暅一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:“幂势既同,则积不容异。”意即:位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。在西方被称为“卡瓦列利原理”,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利(Cavalieri)发现的。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖暅原理”。

❻ 数学家的故事急!!!!~~~

这个也是陈景润的,也很有趣!
陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。
有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。
理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?
过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。
陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。
陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。
“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。
管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。
时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。
陈景润把书收拾好,就往外走去。图书馆里静悄悄的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。
要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!
他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。
“陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。”
党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。
他打开灯,马上做起那道题目起来。

❼ 帮我找两个数学家的故事。

数学家高斯的故事

高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。

高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。

老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。

1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。

1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。

希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了:

一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,…

费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理:

任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。

这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。

二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。

1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关于测地学的书,由于测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。

1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」。

在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber)一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。

1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。

1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。

高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。

1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。 1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。

高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:「宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。 其中一个有名的例子是关于非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺于平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道:

to praise it would mean to praise myself.我无法夸赞他,因为夸赞他就等于夸奖我自己。

早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。

美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics) 一书里曾经这样批评高斯:

在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡梦中安详的去世了。

陈景润成了国际知名的大数学家,深受人们的敬重。但他并没有产生骄傲自满情绪,而是把功劳都归于祖国和人民。为了维护祖国的利益,他不惜牺牲个人的名利。
1977年的一天,陈景润收到一封国外来信,是国际数学家联合会主席写给他的,邀请他出席国际数学家大会。这次大会有3000人参加,参加的都是世界上著名的数学家。大会共指定了10位数学家作学术报告,陈景润就是其中之一。这对一位数学家而言,是极大的荣誉,对提高陈景润在国际上的知名度大有好处。
陈景润没有擅作主张,而是立即向研究所党支部作了汇报,请求党的指示。党支部把这一情况又上报到科学院。科学院的党组织对这个问题比较慎重,因为当时中国在国际数学家联合会的席位,一直被台湾占据着。
院领导回答道:“你是数学家,党组织尊重你个人的意见,你可以自己给他回信。”
陈景润经过慎重考虑,最后决定放弃这次难得的机会。他在答复国际数学家联合会主席的信中写到:“第一,我们国家历来是重视跟世界各国发展学术交流与友好关系的,我个人非常感谢国际数学家联合会主席的邀请。第二,世界上只有一个中国,唯一能代表中国广大人民利益的是中华人民共和国,台湾是中华人民共和国不可分割的一部分。因为目前台湾占据着国际数学家联合会我国的席位,所以我不能出席。第三,如果中国只有一个代表的话,我是可以考虑参加这次会议的。”为了维护祖国母亲的尊严,陈景润牺牲了个人的利益。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。
在美国这样物质比较发达的国度,陈景润依旧保持着在国内时的节俭作风。他每个月从研究所可获得2000美金的报酬,可以说是比较丰厚的了。每天中午,他从不去研究所的餐厅就餐,那里比较讲究,他完全可以享受一下的,但他都是吃自己带去的干粮和水果。他是如此的节俭,以至于在美国生活五个月,除去房租、水电花去1800美元外,伙食费等仅花了700美元。等他回时, 共节余了7500美元。
这笔钱在当时不是个小数目,他完全可以像其他人一样,从国外买回些高档家电。但他把这笔钱全部上交给国家。他是怎么想的呢? 用他自己的话说:“我们的国家还不富裕,我不能只想着自己享乐。”
陈景润就是这样一个非常谦虚、正直的人,尽管他已功成名就,然而他没有骄傲自满,他说:“在科学的道路上我只是翻过了一个小山包,真正的高峰还没有有攀上去,还要继续努力。”

阅读全文

与刘徽恒越基金相关的资料

热点内容
诺安成长基金320003 浏览:707
微银融资租赁 浏览:55
通达信股票投资价值公式 浏览:958
济南农发融资 浏览:883
贷款公司权证部岗位职责 浏览:346
期货600秒买涨买跌 浏览:483
东方证券推出的基金有哪些 浏览:698
短债基金债券久期 浏览:65
镍期货东方财富贴吧 浏览:924
政府平台信托融资 浏览:241
马来西亚农产品价格水平 浏览:123
潜江周边有哪些正规小额贷款公司 浏览:125
如新的股票 浏览:224
招商理财产品有哪些 浏览:120
上海菁葵投资管理公司 浏览:386
高管信托设计 浏览:155
单项评估贷款 浏览:912
5300美元多少人民币 浏览:992
抓取股票数据 浏览:699
银行不上班汇外汇 浏览:292