Ⅰ 量化投资好做吗,这份工作有多难
比较专业,还需专业人士来做。
Ⅱ 中国现在量化投资靠谱吗
我本身做美来国股市的,对国内源市场只能是比较了解。美国那边确实有华人在做中国国内市场的量化投资。这些人都比较低调,比如在经贸大厦租个办公室什么的,但是并不谈论自己在做什么。我也认识几位在广州做了四五年的朋友。
单纯的量化投资是可行的,都是看期望和概率,影响因子很多。主要在CTA用,当然模型会复杂些,工具也多些(比如说考察两个index的spread,跨区等等)。这种相对低频的量化投资可以移植到中国二级市场上。很多人误以为大量的内幕交易和市场操纵会阻碍量化投资,其实不然。量化投资最大的敌人是市场有效,最怕完全效率市场。只要交易所披露信息及时,而市场总有人在交易,有人性在,那么量化投资就是可以做的。另外,基于量化指标的回测统计方法在中国远没有得到广泛使用,大多数投资者采用跟风投资或K线图形的策略。也正因为很少有人用这种方法买卖股票,这种方法在中国显得真正非常高效,做到了高收益低风险。据我所知,国内京东金融在今年也开始做了,另外实盈机构、爱猫爪APP的量化策略也非常领先。
最后,我认为风靡英美的高频交易在中国目前还不大行,因为手续费太高。
Ⅲ 期货公司和证券公司比,哪个收入高做的职位是 金融工程方面,量化投资。
什么叫金融工程、量化投资,做期货这么久没听过有这个职位,先把职位弄清楚,做业务就是做业务,做后台管理就是做后台管理,你是学什么的,有没有两证,没有两证就是扯淡。
Ⅳ 做量化投资哪家收益高
我自己尝试过好几个平台,做下来感觉比特币基金平台比较好,比特币的支付领域更加广泛让比特币更加有价值,牛市一定能赚很多钱,也可靠。
Ⅳ 应聘量化投资工作需要哪些技术
强烈的兴趣
想做好一件事情没有兴趣也只是三天打鱼两天晒网,最后不得而终,因此需要培养对投资形成强烈的兴趣,每根K线的波动能够刺激你的心脏随之不断跳动。
学习能力
量化交易是一门跨学科知识,必须有快速地问题解决能力和自学能力,懂得锲而不舍不断专研的试错法。研究生已经具备了较好的学习能力。
编程
编程很重要,现在Python是标配,matlab、R拿来做量化的人真的不多。虽然不是做开发,但是基本的简单编程知识还是要会。想学Python和Pandas,推荐Python基础教程和《利用Python进行数据分析》,想学编程知识,推荐《 代码大全 》,这本书没有什么代码,不要为名字所迷惑,不过如果想成为编程高手的话,看了绝不后悔。
看书一定要经典,不经典的书简直就是浪费生命,这三本书如果不想买,网上电子版肯定是很多的,话不多说。
量化知识
很多程序员开始转量化,但是金融知识和量化知识不够。经典的重要性在此显得更为重要,编程的书籍不看经典的我也能进步,可能会慢点,但是量化金融知识不看经典的书,那么可能就会南辕北辙,甚至影响到投资的整个生涯,不对,走偏了的话,就无生涯可谈。
投资的基础知识,比如股票债券基础知识,先来看看滋维博迪的《投资学(原书第9版)》([美]滋维·博迪(Zvi Bodie)
再来一本干货,很多国内外研究生教程,介绍的更多的是衍生品,约翰赫尔的《期权、期货及其他衍生产品(原书第9版)》([加]约翰·赫尔(John C.Hull))
期权这么火,推荐 麦克米伦的《金融期货与期权丛书:期权投资策略(原书第5版)》([美]劳伦斯 G.麦克米伦(Lawrence G.McMillan))
想知道公募基金大佬如何做股票?李腾翻译的大作奉上,主动投资组合管理 创造高收益并控制风险的量化投资方法(原书第2版)
想知道私募基金怎么搞交易的?交易中有哪些技巧?以及如何在量化中走弯路?推荐 范撒普的通向财务自由之路,这可不是一本关于财务分析、会计理论的书籍,真正理解了里面的思想,资金管理、风险控制你就不会纠结。
现在中产压力这么大,那么多人有中年职业危机,想知道怎么把交易当做全职?推荐 埃尔德以交易为生,他可是将自己如何转行交易,并以交易作为自己的终身职业的心历路程和盘托出。
英语
你可以不说英语、听不懂英语,但最好是要看的懂英语,编程的原生环境是英语,quora、stackoverflow、github也是要求英语阅读能力,要是想用机器学习、深度学习做量化,那么多paperarticle都是英语,读不懂怎么做的好?本来是谈量化入门,但好像谈到量化进阶了。
交易
没有途径,实战是最好的方法。确实不行,模拟交易也可以。
量化交易以思想为本,工具为用,路子不能走偏。
快速迭代
类似于实验,都是需要成千上万反反复复的检查、测试。在此,讲到了实验的快速开发和迭代,那么就顺便给个传送门:BigQuant - 人工智能量化投资平台.,人生苦短,一定要快速迭代,缩短策略开发生命周期。因为你的想法上千个,可能只有几个有价值。
Ⅵ 量化交易从业者收入和前景如何
一看你就是金融人员的新手,金融分为私有和公有单位,我现在只说公有单专位,公有的是属已职位来区别的,一般是证券公司、基金公司等公职单位职业,薪酬是固定的一般8K-50K不等,但普遍是普通职位,重要职位一般是带职,就是公职负责人推荐进行领导,在金融上有着过人本事,学历应该要求不高,而对外职业要求很高,比如本科、研究生、博士、以上学历,单个人没有关系人推荐,金融上不过关,没有工作经验,基本是没有多大升值空间的,前景的话,在大数据时代,如果有过人的本事,升级到重要部门领导的话,年限100万左右,金融业发展越是缓慢,因为金融业发展需要市场、用户、需要企业的经济外放资本,而当下实体经济为主导的市场,金融没有昔日的光彩,但随着实体经济运行成本越来越高,金融的发展是一定的发展的通道,因为没有数字金融业指导的实体经济会在没有金融指引下会出现很多大危机和奔溃,无论是否使用金融,实体经济在波涛的市场下必定会出现危机和奔溃,这个也成为的恶毒资本家走向末日,一切果最后归因,希望对你有帮助。
Ⅶ 量化投资在中国前景如何
在 国 内 ,量化 交易的 相 对前 景 是 非 常好的。 近 些 年经 济 转 型, 实体 哀 嚎一篇 , 还 有 很 多回 老人 等着 吃 饭, 你 凭 什 么超 过 别人。而 量 化在国内答尚且 还 是 年 轻的行业 ,有 你 发 展的 空 间 。 你 现 在需 要 勇 气 和 正确的道 路。 早点 接触米 筐 量化交 易平 台对 你 的职 业 发展助 力无 穷 。
Ⅷ 在中国,做量化交易一天的工作是怎样的
做量化交易一天的工作:
8:00~:00: 打开交易策略,设置一些运营参数
9:00~9:30: 观察策略运转,确保没有问题
9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法
15:30~17:00: 分析交易记录, 确定第二天的交易计划
17:00~18:00: 运动
岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持;
岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;
理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);
有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;
(8)量化投资高薪扩展阅读
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,
极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
Ⅸ 量化投资赚钱吗有人说容易亏损,哪个是正确的呢
很赚钱,就是有点风险,做的不好的话,容易亏损,主要还是看技术。可以到华盛天成上面进行这方面的交易,这个平台在这方面是行家,平台有很多这方面的专业人才,你可以去看看
人类对于股市波动逻辑的认知,是一个极具挑战性的世界级难题。迄今为止,尚没有任何一种理论和方法能够令人信服并且经得起时间检验——2000年,美国著名经济学家罗伯特·席勒在《非理性繁荣》一书中指出:“我们应当牢记,股市定价并未形成一门完美的科学”;2013年,瑞典皇家科学院在授予罗伯特·席勒等人该年度诺贝尔经济学奖时指出:几乎没什么方法能准确预测未来几天或几周股市债市的走向,但也许可以通过研究对三年以上的价格进行预测。
当前,从研究范式的特征和视角来划分,股票投资分析方法主要有如下三种:基本分析、技术分析、演化分析。这三种分析方法基于完全不同的理论体系和逻辑结构,其主要研究对象,都只侧重于市场运作的某一特定方面或者范畴,都有其合理性和局限性,但它们对于全面认识和深入探索股市运行规律,又都是必不可少的。它们所依赖的理论基础、前提假设、范式特征各不相同,在实际应用中它们既相互联系,又有重要区别。
Ⅹ 量化期权投资经理有前途吗
量化投资这个东西比较小众,据说国外是主流,不过这个说法最近我比较怀疑,因为好像大家对“量化交易”这个词理解不太一样,比如做市商,那可能都是通过程序来完成交易对冲,这个可能和我们说的量化交易不是一回事。
再说回来,目前股票量化很难做,因为不是T+0,期货要好做不少,但是我知道的比较少人去做,而期权,目前国内商品期权和个股期权加在一起才4个品种(我假设你是做国内的交易,并且都是场内期权),从我实盘来看,商品期权的流通量还是很低,这就会导致你不断撤单改价,也就会影响你的滑点,最终你交易下来,恐怕和你模拟的结果差别很大。
另外个问题是手续费,如果按照期权金的比例来算,期权的手续费真是相当高了,尤其是个股期权,所以这个会导致你短线模型基本没法做。
但是从我个人来看,我认为期权是比较合适做量化交易的,这里涉及的因素比较多,远远比期货股票复杂,这点来看是适合量化交易的,只是在这么小的水池里,是不是要搞这么复杂,我就不好说了。
没在证券公司干过,不知道一般是否有这种职业位置配置,所以上面我只能说说我对这个交易本身的看法了。
你要是有啥这方面的信息也希望分享一下,大家都了解了解。