导航:首页 > 基金投资 > 量化投资未来

量化投资未来

发布时间:2021-04-13 13:48:46

㈠ 学习金融资产管理和量化投资 发展前景如何

相对于美国成熟的资产管理业务发展历史,中国的资产管理有着12年年轻的历史。正因为是起步阶段,人们能看到其无限发展空间和巨大潜力。一些大的金融机构运用资产管理进行经营,在金融危机期间保持着盈利,业内不乏有成功案例。 资产管理业务有个两难问题,即业务扩展和风险管理的平衡问题,也就说如果业务扩展太快,太多,风险控制就会弱,如果太关注于风险控制的话,可能业务扩展会慢。其实观察成功的案例会发现,这两点是可以做到平衡的。在国外金融机构会发现很多有意思的产品,比如气象气候、低碳、降雨量、体育等基金、债券,可是在中国却是比较空白。其实这是市场细分的结果,举个例子,如气象基金,今年冬天会不会冷?如果不冷的话,使用的燃料能源就会少,就会影响这类产品,如果有天然气产品,就可以进行价格对冲。这也是很多机构追求平稳发展来利用资产管理的原因。 拿期货公司来说,未来将大大偏向程序化交易策略,由此形成成熟的人才团队来更好地服务客户,将会使期货公司获得永续发展,拓宽业务利润获取的范围和深度。专家建议中国的资产管理业务应更重视专业性,对行业、公司、个人发展都是最重要的一点。根据麦肯锡的预计,中国的资产管理业务在未来的十年将保持每年24%的增长率,成为中国乃至世界发展最快的金融产业,可以说中国资产管理业将涌现出无限机遇。 目前国内的量化交易大概占到市场交易量的20%,每年都在增加,特别是这两年增长迅猛。70%的交易量由程序化交易完成,国内才刚刚起步,因此,国内的发展空间还非常巨大,产品的种类也会更加丰富,策略复杂度和交易工具的精细化也会不断提高。 从投资者身份来看,目前量化投资者主要人群集中在期货公司、私募基金以及券商的自营、基金公司的专户。规模上,以私募基金为主要参与群体。 从操作风格来看,目前期货市场有四类量化投资者,分别是阿尔法产品的使用者、趋势性交易者、套利交易者以及高频交易者。阿尔法产品的使用者,即利用股指期货与股票现货进行搭配,获得股票的超额收益;趋势性交易者,充分运用各种模型对价格进行预判,这种交易者的资金从几万到几千万都是存在的;套利交易,包括无风险的股指期现套利和统计套利;高频交易者,这种一般利用期货市场价格的微小变动进行快速交易,从而获得高收益。 量化交易模式越来越被更多的机构投资者所采用,量化交易模式将会成为主流的交易模式。届时,量化投资产品可能更加多样化,量化投资将会成为金融机构争夺客户资源的主要工具,然后随着量化工具更新速度的加快,量化投资的应用领域将会不断拓宽。 由此可见,学习资产管理与量化投资对公司业务和个人的发展是十分迫切并且必要的。

㈡ 了解量化投资的人谈谈做量化投资的前途。本人今年的应届毕业生,数学计算机兼修,欲从事量化投资。

这个要看所在公司的层次,不知道你在什么公司实习
现在量化投资都被叫滥了,大家都打着回量化投资的旗号,真答正能做起来的很少很少,国内市场本身的有效性不太可能支持大规模的量化投资,未来几年仍会是这样,量化投资仍然只能发挥花瓶的作用。当然,凡事无绝对,有个别公司还是不错的,能做的起来,也坚持在做

㈢ 量化交易为什么历史表现很好的策略,未来的表现却很差呢

这个问题很简单,过去十几年房价涨了几十倍,未来十几年房价还可以涨十几倍吗?
过去已成事实,而未来却是概率性的,因此回测有用的策略在未来或许有用,或许无用。
因此量化交易并不是最好的选择。

㈣ 什么是量化投资

你好,量化投资,简单地说就是利用数学、统计学、信息技术的量化投资方法来管理投资组合。

㈤ 量化交易未来前景如何

(最佳答案)
看平衡收支表,看利润等.先去这个公司看其报表.看利润,要从其专销售收入来看.
比如利属润占的比例是多少.从毛利润的大小可以知道一个公司的进货商如何.
如果毛利润与销售额的比例大,说明其进货便宜.从分红可以看出公司是注重投资,
还是注重短期的获利.从流动资金和流动负债的比例可以看出公司偿还他人的能力。
如果过低,可以从侧面说明公司的管理,效率不高,如果太高,又说明公司不善于投资.
其他方面,你可以从公司的管理人员来看,了解其背景,评估他的能力,以及是否适合这个公司.或者从过去的业绩来看,然后要看这个公司的贷款如何。如果太多,就有风险,或者说底气不足.用净利润除以销售额可以知道公司在其他方面的消耗的管理,比如水电,办公用品等.如果结果比较高,说明公司节省,管理有序,如果比较低,说明公司的效率不高.最后,把公司的每一年的业绩都比较一下,
如果是明显上升,就可以说明公司的方向是正确的。

㈥ 量化投资的主要方法和前沿进展

量化投资是通过计算机对金融大数据进行量化分析的基础上产生交易决策机制。设计金融数学和计算机的知识和技术,主要有人工智能、数据挖掘、小波分析、支持向量机、分形理论和随机过程这几种。
1.人工智能
人工智能(Artificial Intelligence,AI)是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及计算机科学、心理学、哲学和语言学等学科,可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。
从思维观点看,人工智能不仅限于逻辑思维,还要考虑形象思维、灵感思维才能促进人工智能的突破性发展,数学常被认为是多种学科的基础科学,因此人工智能学科也必须借用数学工具。数学不仅在标准逻辑、模糊数学等范围发挥作用,进入人工智能学科后也能促进其得到更快的发展。
金融投资是一项复杂的、综合了各种知识与技术的学科,对智能的要求非常高。所以人工智能的很多技术可以用于量化投资分析中,包括专家系统、机器学习、神经网络、遗传算法等。
2.数据挖掘
数据挖掘(Data Mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。
与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。在量化投资中,数据挖掘的主要技术包括关联分析、分类/预测、聚类分析等。
关联分析是研究两个或两个以上变量的取值之间存在某种规律性。例如,研究股票的某些因子发生变化后,对未来一段时间股价之间的关联关系。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阈值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。
分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。
预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。
聚类就是利用数据的相似性判断出数据的聚合程度,使得同一个类别中的数据尽可能相似,不同类别的数据尽可能相异。
3.小波分析
小波(Wavelet)这一术语,顾名思义,小波就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与傅里叶变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破,因此也有人把小波变换称为数学显微镜。
小波分析在量化投资中的主要作用是进行波形处理。任何投资品种的走势都可以看做是一种波形,其中包含了很多噪音信号。利用小波分析,可以进行波形的去噪、重构、诊断、识别等,从而实现对未来走势的判断。
4.支持向量机
支持向量机(Support Vector Machine,SVM)方法是通过一个非线性映射,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题,简单地说,就是升维和线性化。升维就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起维数灾难,因而人们很少问津。但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归)。
一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了维数灾难。这一切要归功于核函数的展开和计算理论。
正因为有这个优势,使得SVM特别适合于进行有关分类和预测问题的处理,这就使得它在量化投资中有了很大的用武之地。
5.分形理论
被誉为大自然的几何学的分形理论(Fractal),是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态、结构、信息、功能、时间、能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而极大地拓展了研究视野。
自相似原则和迭代生成原则是分形理论的重要原则。它表示分形在通常的几何变换下具有不变性,即标度无关性。分形形体中的自相似性可以是完全相同的,也可以是统计意义上的相似。迭代生成原则是指可以从局部的分形通过某种递归方法生成更大的整体图形。
分形理论既是非线性科学的前沿和重要分支,又是一门新兴的横断学科。作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识部分来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态、新秩序;三是分形从一特定层面揭示了世界普遍联系和统一的图景。
由于这种特征,使得分形理论在量化投资中得到了广泛的应用,主要可以用于金融时序数列的分解与重构,并在此基础上进行数列的预测。
6.随机过程
随机过程(Stochastic Process)是一连串随机事件动态关系的定量描述。随机过程论与其他数学分支如位势论、微分方程、力学及复变函数论等有密切的联系,是在自然科学、工程科学及社会科学各领域中研究随机现象的重要工具。随机过程论目前已得到广泛的应用,在诸如天气预报、统计物理、天体物理、运筹决策、经济数学、安全科学、人口理论、可靠性及计算机科学等很多领域都要经常用到随机过程的理论来建立数学模型。
研究随机过程的方法多种多样,主要可以分为两大类:一类是概率方法,其中用到轨道性质、随机微分方程等;另一类是分析的方法,其中用到测度论、微分方程、半群理论、函数堆和希尔伯特空间等,实际研究中常常两种方法并用。另外组合方法和代数方法在某些特殊随机过程的研究中也有一定作用。研究的主要内容有:多指标随机过程、无穷质点与马尔科夫过程、概率与位势及各种特殊过程的专题讨论等。
其中,马尔科夫过程很适于金融时序数列的预测,是在量化投资中的典型应用。
现阶段量化投资在基金投资方面使用的比较多,也有部分投资机构合券商的交易系统应用了智能选股的技术。

㈦ 什么是量化交易,未来前景如何

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史回数据中海选答能带来超额收益的多种“大概率”事件以制定策略,然后严格执行已固化的策略来指导投资。避免人的主观因素,在市场极度狂热或悲观的情况下作出非理性的投资决策。量化交易可以获得持续的、稳定且高于平均收益的超额回报。
相对于传统交易方式,量化交易有着以下优点
1)系统性:通过多层次的量化模型多角度的去观察及海量数据的观察,捕捉许多的投资机会。
2)纪律性:严格执行数量化投资模型所给出的投资建议,可以克服人性最大的弱点。
3)准确性:准确客观的评价交易机会,克服主观情绪的偏差,通过全面、系统性扫描捕捉错误定价和错误估值带来的机会。
如今量化交易越来越多的应用在股票基金等投资上,还衍生了像京东量化平台、优矿这样的专门为量化开发者服务的平台,应该会成为今后投资的大趋势。

㈧ 量化投资到底是什么鬼,未来将颠覆中国股票市场

量化投资在一定程度上已经被别有用心地神话或者说标签化了,就像当下风头正劲的“互联网金融”一样,很多时候都被包装成了看似“高端大气”、且可能“一夜暴富”的卖点或者噱头。追根溯源,其实量化就是指运用数学或者统计模型来模拟金融市场的未来走向,从而预估金融产品的潜在收益。在前文中,我们还曾提到多个数字,如平均年收益率、年回报率、年盈利率,这些其实都表征同一个量化指标,即“年化收益率”。它是指投资者在一年的投资期限内所能获得收益比例,专门用于评估投资行为或金融产品的好坏优劣。 那么,究竟多高的年化收益率才能给投资者带来丰厚的投资回报?为了更加清楚的分析这个问题,我们不妨举个例子。
比如某位名叫“G”的投资者,在1990年时持有3.8万的启动资金,如果其所认购产品的平均年化收益率是60%,那么经过25年,到2015年,“G”将会拥有40亿,但如果其所购产品的平均年化收益率上涨15%(到75%),那么25年后,“G”的资产将会是40亿后再加个零,变成400个亿。百亿身价竟仅仅始于3.8万?这种堪比原子弹爆炸的财富增长若仅仅用“回报丰厚”来形容,会不会未免有些太吝啬了?我并不十分相信那些投行精英们会如此慷慨无私,让投资者只需在家坐着就能稳收百亿回报,所以如果今后有人向我推荐金融产品,而且宣称年化收益率可以有60%,我肯定得思量思量,自己是不是真的运气那么好,这辈子可以被钱砸晕?毕竟像文艺复兴公司的传奇也像“文艺复兴”一样,虽然能被历史铭记,但却难以被时代复制。

㈨ 什么是量化交易,未来前景如何知道的讲讲。

量化交易,有时候也称自动化交易,是指以先进的数学模型替代人为的主观判断,避免在专市场极属度狂热或悲观的情况下做出非理性的投资决策。
在股票市场上,量化交易早不是什么新闻,在国外,七成的交易都是通过计算机决策的,在国内这个数字也接近五成。
过去的股票市场都是靠交易员手动敲键盘来操作的,难免一失手成千古恨,这种行为被戏称为“胖手指”,相比之下,量化交易则如同点石成金的“仙人指”。量化里最美的童话就是“旱涝保收”,牛市也好,熊市也罢,都能大赚特赚。
量化交易的优势:1. 严格的纪律性 2. 完备的系统性 3. 妥善运用套利的思想 4. 靠概率取胜
量化交易的风险性:首先是一二级市场“级差”风险,其次是交易员操作风险,最后是系统软件的风险。
满意请采纳答案,有不明白的可以继续提问。

㈩ 量化投资有哪些优势

量化投资就是借助现代统计学、数学的方法,从海量历史数据中寻找能够带来超额收益的多种“大概率”策略,并纪律严明地按照这些策略所构建的数量化模型来指导投资,力求取得稳定的、可持续的、高于平均的超额回报。量化投资属主动投资范畴,本质是定性投资的数量化实践,理论基础均为市场的非有效性或弱有效性。
量化投资特点:
第一,投资视角更广。借助计算机高效、准确地处理海量信息,在全市场寻找更广泛的投资机会。
第二,投资纪律性更强。严格执行数量化投资模型所给出的投资建议,克服人性的弱点。
第三,对历史数据依赖性强。
量化投资策略有如下五大方面的优势,最大的优势就是风险管理更加精准,能够提供超额的收益,主要包括纪律性、系统性、及时性、准确性、分散化等。
(1)纪律性:严格执行量化投资模型所给出的投资建议,而不是随着投资者情绪的变化而随意更改。纪律性的好处很多,可以克服人性的弱点,如贪婪、恐惧、侥幸心理,也可以克服认知偏差,行为金融理论在这方面有许多论述。
(2)系统性:量化投资的系统性特征主要包括多层次的量化模型、多角度的观察及海量数据的观察等等。多层次模型主要包括大类资产配置模型、行业选择模型、精选个股模型等等。多角度观察主要包括对宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度的分析。
(3)及时性:及时快速地跟踪市场变化,不断发现能够提供超额收益的新的统计模型,寻找新的交易机会。
(4)准确性:准确客观评价交易机会,克服主观情绪偏差,妥善运用套利的思想。量化投资正是在找估值洼地,通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会。与定性投资经理不同,量化投资经理大部分精力花在分析哪里是估值洼地,哪一个品种被低估了,买入低估的,卖出高估的。
(5)分散化:在控制风险的条件下,充当准确实现分散化投资目标的工具。分散化也可以说量化投资是靠概率取胜。这表现为两个方面,一是量化投资不断的从历史中挖掘有望在未来重复的历史规律并且加以利用,这些历史规律都是有较大概率获胜的策略。二是依靠筛选出股票组合来取胜,而不是一个或几个股票取胜,从投资组合理念来看也是捕获大概率获胜的股票,而不是押宝到单个股票上。

阅读全文

与量化投资未来相关的资料

热点内容
沃尔特理财 浏览:80
加大号理财 浏览:41
4123等于多少人民币 浏览:457
天天万利宝是货币基金 浏览:824
眼护融资 浏览:367
正规上海证券投资咨询 浏览:90
水费质押贷款 浏览:333
债务融资分类 浏览:779
信保融资单 浏览:17
港币1块钱等于多少人民币多少 浏览:274
大豆期货研报 浏览:409
公积金怎么贷款买车 浏览:729
广发经营贷款结清证明 浏览:218
北京中保国信融资担保有限公司 浏览:312
2018期货暴涨的 浏览:762
江阴股票板块 浏览:461
股票骗人的吗 浏览:795
基金净值最高多少 浏览:974
理财师赚钱吗 浏览:746
旗宾集团资金流向 浏览:435