假的,亲口告诉你这简直是做梦,以这种幌子骗人,公司一点也不规范,是一个人就收,30万骗局简直是坑了好多人
❷ 目前国内进行量化投资的个人多不多
近年来,随着证券市场规模的不断扩大,金融衍生产品不断推出, 投资策略和盈利模式发生根本性改变,投资复杂程度日益提高,导致证券市场投资者的构成比例出现了相应的变化。专业投资管理人的占比越来越大,且有加速之势。另一方面,量化对冲投资策略以其中低风险稳定收益的特性,将成为机构投资者的主要投资方向之一。一、量化对冲业务特点及服务要求量化对冲是一项业务特点鲜明、极具专业性、配套服务要求高的业务,其业务特点表现为:(一) 投顾专业化水平高。量化对冲业务对管理人在数据挖掘、策略开发、程序化交易等IT 技术研发能力要求很高。根据海外经验证明,从事量化对冲投资的管理人均为专业机构投资者,专业背景来自物理、数学、统计、计算机等领域的高端人才,需要具备量化投资模型的开发能力及持续的模型优化能力,具有一定的行业进入门槛。分支机构在识别和扶植量化对冲管理人方面也必须具备一定的鉴别能力,避免付出大量精力而收效甚微。(二) 量化对冲业务存在天然的地域分布。与公募基金公司布局相类似,目前主要的量化对冲管理人大都集中在上海、北京、深圳等几大金融市场活跃区域,与公司各地区量化对冲业务发展不均衡的情况相吻合。(三) 产品风险相对较低。目前市场上的量化对冲产品多以市场中性策略为主,对冲证券市场系统性风险,相较于传统方向型的权益类产品,在控制产品回撤和获取稳定收益方面具备较大的优势。随着卖空机制的不断完善,对冲策略将逐渐丰富,例如:统计套利、多空策略、配对交易等。(四) 业务落地要有专门的支持团队。据近年来推广量化对冲业务的实际操作经验,在业务执行层面需要落地营业部协调的技术问题就很多,各营业部须配备专业的业务团队进行支持,快速响应和解决存在的问题。实际情况是大部分营业部没有足够的人力、财力和物力,用于配臵专业的支持团队。根据开展量化对冲业务的以上特点,对券商提出了较高的综合服务要求:(一) IT 系统要求高。量化对冲业务模式对于IT 系统都具有极高要求,一方面体现在交易系统及行情数据响应速度稳定高效,另一方面体现在系统整合及开发易用性。(二) 策略研发需求高。随着金融创新工具的不断推出,量化对冲管理人只有具备持续策略开发和策略优化的能力才能取得稳定、优秀的投资业绩,需要我公司提供强大的策略研究以及策略交流等支持。(三) 产品设计和发行要求高。量化对冲业务发展的必由之路, 是以产品化的模式实现规模效益扩大生产力,投资管理人需要券商提供SPV 设计(如信托、公募、资管等法律结构安排)、提供产品结构设计、风险控制、后台运营和营销组织等全方位的一揽子配套服务, 与证券公司在产品设计的专业能力、统一营销的组织能力和整合公司总部资源能力相匹配。二、量化对冲业务的发展现状
(一) 投资管理人或直接投资者专业化水平参差不齐
目前,市场上量化对冲投资管理人按专业水平大致分为三大类:
第一类:专业水准极高的管理人或投资人,拥有多年的投资经验,拥有自主开发的量化交易系统,有专门的策略研究团队,有实盘过往业绩表现,有持续的生存能力。此类管理人既有自学成才的,也有从 海归加盟的,来自成熟市场有经验的管理人在逐步增加;
第二类:正在成长过程中的管理人或投资人。此类管理人有较好的国内证券市场投资经验和过往业绩,学习能力强,应变能力强,正在成为量化对冲业务的新生力量;
第三类:专业能力欠缺,只有愿望,没有专业支撑,被动依赖技术平台而操作的管理人或是直接投资人,对量化对冲业务一知半解甚至完全不懂,根据策略交易系统发出信号被动投资,预计此类管理人 (投资人)难以应对市场变化,很快就会因束手无策而离开市场。
(二) 从券商或营业部提供的服务支持来看,专业化水准和服务支持能力也参差不齐。
主要分为三类:
第一类:由专业的团队支撑,有系统的技术支持、策略支持和服务支持;
第二类:正在起步阶段的券商,但他们也有可能后发制人,定位精准,整合资源,成为量化对冲市场的主力服务机构;
第三类:没有能力支持量化对冲业务。既无技术支持,也无专业服务团队,更谈不上策略支持。业务发展处于自生自灭的状态,业务也处于很大的波动中。
❸ python量化哪个平台可以回测模拟实盘还不要钱
Python量化投资框架:回测+模拟+实盘
Python量化投资 模拟交易 平台 1. 股票量化投资框架体系 1.1 回测 实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架: Zipline :事件驱动框架,国外很流行。缺陷是不适合国内市场。 PyAlgoTrade : 事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python 2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。 pybacktest :以处理向量数据的方式进行回测,最新更新日期为2个月前,更新不稳定。 TradingWithPython:基于pybacktest,进行重构。参考资料较少。 ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。 RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。 2 模拟 模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。 当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。 雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。 Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document 3 实盘 实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。 easytrader系列当前主要有三个组成部分: easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件 easyquotation : 实时获取新浪 / Leverfun 的免费股票以及 level2 十档行情 / 集思路的分级基金行情 easyhistory : 用于获取维护股票的历史数据 easyquant : 股票量化框架,支持行情获取以及交易 2. 期货量化投资框架体系 一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。 2.1 回测 回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少; 去年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。 就个人理解而言,可能wind的是一个相对合适的选择。 2.2 模拟 + 实盘 vn.py是国内最为流行的一个开源平台。起源于国内私募的自主交易系统,2015年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。 能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。
❹ 量化交易真的有那么好吗
挺好的,可以帮助解套,增加收益,操作也不是很简单,很适合一些没有时间或者专业能力不强的客户,能帮助客户获得较高的收益
❺ 量化交易平台的券商实盘通道搭建难不难有经验的回答
由于监管合规问题,第三方金融服务公司接入券商实盘通道是比较困难的,在合规监管的前提,牵涉太多部门和资源,如果你仅是一个小小的服务商建议还是使用已经打通券商实盘通道的量化平台,比如掘金量化、优矿等。
❻ 量化投资方面,有哪些好的论坛或者网站
微量网不错,
微量网是国内顶尖的量化投资策略在线交易平台,策略提供者和理财投资者的对接平台。网站集投资策略研发、销售、交易为一体,投资者无需安装软件,通过网页或手机控制云端的交易账户,运行投资策略,进行7*24小时无人值守的全自动交易。使命:微量网致力于打造安全、便捷的策略交易平台,带来简单、极致、高效的理财投资体验。愿景:建立理财投资者与策略提供者之间的桥梁。
这个平台上有各种各样的策略,主要是针对国内外交易所的品种,同时配合还有用户论坛,便于策略师和用户间交流,一边用策略一边看大家的讨论,感觉比较爽一些,也是边用边看。
再补充2个个人觉得不错的:
elitetrader
EliteTrader.com is a group of financial traders that helpeach other
work through the tough and lonely journey of tradingprofitably. Our
members learn faster, develop new relationships, and avoidcostly
mistakes through daily collaboration.
这里讨论的话题比较全,很棒!
Collective2
collective2.com 19,000 traders. 58,000 strategies.
Copy the world's best traders in your brokerage account.
Choose your trade leader
Then Follow their trades automatically.
国内使用的话建议使用微量网确实是很不错的量化投资网站。希望可以帮助题主。