⑴ 国六、补贴、氢燃料电池发展背景下,中重型车面临怎样的机遇
在排放要求日益严格、国六标准提前实施、电动化成为大势所趋的背景下,中重型车也正在抓住机遇谋求零排放的有效路径。2019世界新能源汽车大会上,能源基金会中国交通项目主任龚慧明和国际清洁交通委员会中国项目负责人何卉,从政策、技术路线及市场等方面,探讨了中重型车面临的机遇和挑战。
公共领域车辆电动化的驱动力之一即是改善大气环境。不过,目前在各类中重型车中,只有公交车已经率先开始电动化。由于电池成本与能量密度的限制,中重型车的电动化进程仍然面临着巨大的挑战,尤其是对于长距离、大负荷运输的车辆来说更是如此。截止2018年底,中国的电动公交已经占公交车总量的一半。龚慧明表示,城市交通电动化的成功转型给其他类型的中重型车提供了可以借鉴的经验。在他看来,公交车电动化的大规模推广,有助于整个行业技术的成熟和成本的下降。另外,公交固定线路的运营组织特点,值得物流车运载货车等有固定线路的中重型车借鉴和学习。目前,全国的电动物流车数量已经有较大的增长,运载货车也在整个交通运输结构中被引起重视。
国六标准实施需充分调研市场需求
7月1日起,北京、上海、深圳、广州、陕西、河南等多个地区已经在轻型、重型商用车、燃气车、公交车等不同细分领域实施国六排放标准。
何卉认为,国六标准分国六a和国六b两个阶段实施,说明政策的实施有过渡期存在。有些地方政府直接进入国六b阶段,相当于把预留的过渡期极大压缩了。而在龚慧明看来,“地方政府选择提前实施国家制定的措施,这在法律层面上没有任何问题。”纵观市场,各地在商用车层面实施国六标准的动作十分迅速,企业大多都持积极应对的态度。“厂商大都直接或间接参与了国六标准制定的过程,因此技术储备不是最大的挑战。”龚慧明说。
一项政策的完美落地,时机很重要。令龚慧明感到疑惑的是,在政策实施之时,并不知道提前实施的省份对国六市场的需求究竟有多大。对于重型车排放标准的切换,每一次的技术升级,都涉及整车、零部件研发以及生产管理、试验验证等多个方面。因此他建议,政府在制定政策的时候,一定要扎实研究,做好技术认证并把关相关的法律标准。在实施之前,政府和企业更要提前考虑到切换成本。另外,在国六标准实施之后,监管特别重要。“如果继续沿用传统车的监管系统,监管能力跟不上,可能会适得其反。”龚慧明说。
氢燃料电池技术路线优势明显
对于中重型车如何实现零排放,氢燃料电池这条技术路线吸引了业内较大关注。针对这种现象,何卉认为是政策导向的原因。龚慧明认为在商用车领域,氢燃料电池有这样的关注度主要有下面几个因素:
首先,在新能源汽车补贴退坡的大环境下,氢燃料电池的补贴还具有延续性,这是根本原因;
其次,对于纯电动技术路线,煤电企业、煤炭企业、石化企业等能源集团在新能源产业中的参与度较弱。而氢燃料电池涉及到氢气这种清洁能源,导致能源集团参与的积极性明显比原来要高。氢燃料电池这条技术路线的参与主体发生了变化;
再者,随着纯电动汽车的快速迭代,技术在进步,成本在下降,但目前两者都没有取得完全突破,并且纯电动路线在商用车领域仍然存在短板,因此氢燃料电池技术路线的出现又为中重型车实现零排放提供了一种可能性。
另外,他们认为,氢燃料电池技术路线是否适合中重型车,还是要看应用场景和市场选择。何卉介绍道,美国氢燃料电池汽车是为续驶里程一千英里的目标设计的,即一千英里加氢一次,这是美国大集装箱卡车跨州一天能走的最长路程。从应用场景来说,氢燃料电池汽车适合商用车领域。龚慧明则认为目前氢燃料电池汽车面临的关键问题是,它能否作为一个能源载体持续出现,从经济性、技术性、规模性上真正满足未来交通发展的需求。
他们一致表示,未来的技术路线,不一定是乘用车走纯电动的路线,中重型车走氢燃料电池车的路线。技术会有竞争和交叉,最终哪种车型适合什么技术路线,需要基于市场需求,从各个方面去检验。
⑵ 全球生产汽车电池的上市公司都有哪些尽量全面些,谢谢
全球生产汽车电池的上市公司有:
1、002091江苏国泰:锂电池电解液。
主要控股子公司国泰华荣化工新材料有限公司,主要产生产锂电池电解液和硅烷偶联剂,锂电池电解液国内市场占有率超过30%。占上市公司营业利润的30%,公司有望凭借锂离子动力电池的大规模应用迎来新的发展机遇。
⑶ 燃料电池的现状
在中国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。“八五”期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。在中国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对中国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年中国加强了在PEMFC方面的研究力度。 2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华在EVS16届大会上宣布,中国将在2000年装出首台燃料电池电动车。此前参与燃料电池研究的有关概况如下:
1:PEMFC的研究状况
中国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。 中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达0.35W/cm2。
复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。厦门大学与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。
1994年,上海大学与北京石油大学合作研究PEMFC(“八五”攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。
北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,单体电池的电流密度为150mA/cm2。
中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。
天津电源研究所1997年开始PEMFC的研究,拟从国外引进1.5kW的电池,在解析吸收国外先进技术的基础上开展研究。
1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。
2:MCFC的研究简况
在中国开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。
1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。
90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。
北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。
3:SOFC的研究简况
最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达1.18V,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。
1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手制成了管式和平板式的单体电池,功率密度达0.09W/cm2~0.12W/cm2,电流密度为150mA/cm2~180mA/cm2,工作电压为0.60V~0.65V。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。
华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。 发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,它已是能源、电力行业不得不正视的课题。
磷酸型燃料电池(PAFC)
受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。
东芝公司从70年代后半期开始,以分散型燃料电池为中心进行开发以后,将分散电源用11MW机以及200kW机形成了系列化。11MW机是世界上最大的燃料电池发电设备,从1989年开始在东京电力公司五井火电站内建造,1991年3月初发电成功后,直到1996年5月进行了5年多现场试验,累计运行时间超过2万小时,在额定运行情况下实现发电效率43.6%。在小型现场燃料电池领域,1990年东芝和美国IFC公司为使现场用燃料电池商业化,成立了ONSI公司,以后开始向全世界销售现场型200kW设备"PC25"系列。PC25系列燃料电池从1991年末运行,到1998年4月,共向世界销售了174台。其中安装在美国某公司的一台机和安装在日本大阪梅田中心的大阪煤气公司2号机,累计运行时间相继突破了4万小时。从燃料电池的寿命和可靠性方面来看,累计运行时间4万h是燃料电池的长远目标。东芝ONSI已完成了正式商用机PC25C型的开发,早已投放市场。PC25C型作为21世纪新能源先锋获得日本通商产业大奖。从燃料电池商业化出发,该设备被评价为具有高先进性、可靠性以及优越的环境性设备。它的制造成本是$3000/kW,将推出的商业化PC25D型设备成本会降至$1500/kW,体积比PC25C型减少1/4,质量仅为14t。2001年,在中国就将迎来第一座PC25C型燃料电池电站,它主要由日本的MITI(NEDO)资助的,这将是我国第一座燃料电池发电站。
质子交换膜燃料电池(PEMFC)
著名的加拿大Ballard公司在PEMFC技术上全球领先,它的应用领域从交通工具到固定电站,其子公司BallardGenerationSystem被认为在开发、生产和市场化零排放质子交换膜燃料电池上处于世界领先地位。BallardGenerationSystem最初产品是250kW燃料电池电站,其基本构件是Ballard燃料电池,利用氢气(由甲醇、天然气或石油得到)、氧气(由空气得到)不燃烧地发电。Ballard公司正和世界许多著名公司合作以使BallardFuelCell商业化。BallardFuelCell已经用于固定发电厂:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同组建了BallardGenerationSystem,共同开发千瓦级以下的燃料电池发电厂。经过5年的开发,第一座250kW发电厂于1997年8月成功发电,1999年9月送至IndianaCinergy,经过周密测试、评估,并提高了设计的性能、降低了成本,这导致了第二座电厂的诞生,它安装在柏林,250kW输出功率,也是在欧洲的第一次测试。很快Ballard公司的第三座250kW电厂也在2000年9月安装在瑞士进行现场测试,紧接着,在2000年10月通过它的伙伴EBARABallard将第四座燃料电池电厂安装在日本的NTT公司,向亚洲开拓了市场。在不同地区进行的测试将大大促进燃料电池电站的商业化。第一个早期商业化电厂将在2001年底面市。下图是安装在美国Cinergy的Ballard燃料电池装置,正在测试。
图是安装在柏林的250kW PEMFC燃料电池电站:
在美国,PlugPower公司是最大的质子交换膜燃料电池开发公司,他们的目标是开发、制造适合于居民和汽车用经济型燃料电池系统。1997年,PlugPower模块第一个成功地将汽油转变为电力。PlugPower公司开发出它的专利产品PlugPower7000居民家用分散型电源系统。商业产品在2001年初推出。家用燃料电池的推出将使核电站、燃气发电站面临挑战,为了推广这种产品,1999年2月,PlugPower公司和GEMicroGen成立了合资公司,产品改称GEHomeGen7000,由GEMicroGen公司负责全球推广。此产品将提供7kW的持续电力。GE/Plug公司宣称其2001年初售价为$1500/kW。他们预计5年后,大量生产的燃料电池售价将降至$500/kW。假设有20万户家庭各安装一个7kW的家用燃料电池发电装置,其总和将接近一个核电机组的容量,这种分散型发电系统可用于尖峰用电的供给,又因分散式系统设计增加了电力的稳定性,即使少数出现了故障,但整个发电系统依然能正常运转。 在Ballard公司的带动下,许多汽车制造商参加了燃料电池车辆的研制,例如:Chrysler(克莱斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大众)和Volvo(富豪)等,它们许多正在使用的燃料电池都是由Ballard公司生产的,同时,它们也将大量的资金投入到燃料电池的研制当中,克莱斯勒公司给Ballard公司注入4亿5千万加元用于开发燃料电池汽车,大大的促进了PEMFC的发展。1997年,Toyota公司就制成了一辆RAV4型带有甲醇重整器的跑车,它由一个25kW的燃料电池和辅助干电池一起提供了全部50kW的能量,最高时速可以达到125km/h,行程可达500km。这些大的汽车公司均有燃料电池开发计划,虽然燃料电池汽车商业化的时机还未成熟,但几家公司已确定了开始批量生产的时间表,Daimler-Benz公司宣布,到2004年将年产40000辆燃料电池汽车。因而未来十年,极有可能达到100000辆燃料电池汽车。
熔融碳酸盐燃料电池(MCFC)
50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。MCFC的主要研制者集中在美国、日本和西欧等国家。预计2002年将商品化生产。
美国能源部(DOE)2000年已拨给固定式燃料电池电站的研究费用4420万美元,而其中的2/3将用于MCFC的开发,1/3用于SOFC的开发。美国的MCFC技术开发一直主要由两大公司承担,ERC(EnergyResearchCorporation)(现为FuelCellEnergyInc.)和M-CPower公司。他们通过不同的方法建造MCFC堆。两家公司都到了现场示范阶段:ERC1996年已进行了一套设于加州圣克拉拉的2MW的MCFC电站的实证试验,正在寻找3MW装置试验的地点。ERC的MCFC燃料电池在电池内部进行无燃气的改质,而不需要单独设置的改质器。根据试验结果,ERC对电池进行了重新设计,将电池改成250kW单电池堆,而非原来的125kW堆,这样可将3MW的MCFC安装在0.1英亩的场地上,从而降低投资费用。ERC预计将以$1200/kW的设备费用提供3MW的装置。这与小型燃气涡轮发电装置设备费用$1000/kW接近。但小型燃气发电效率仅为30%,并且有废气排放和噪声问题。与此同时,美国M-CPower公司已在加州圣迭戈的海军航空站进行了250kW装置的试验,计划在同一地点试验改进75kW装置。M-CPower公司正在研制500kW模块,计划2002年开始生产。
日本对MCFC的研究,自1981年"月光计划"时开始,1991年后转为重点,每年在燃料电池上的费用为12-15亿美元,1990年政府追加2亿美元,专门用于MCFC的研究。电池堆的功率1984年为1kW,1986年为10kW。日本同时研究内部转化和外部转化技术,1991年,30kW级间接内部转化MCFC试运转。1992年50-100kW级试运转。1994年,分别由日立和石川岛播磨重工完成两个100kW、电极面积1m2,加压外重整MCFC。另外由中部电力公司制造的1MW外重整MCFC正在川越火力发电厂安装,预计以天然气为燃料时,热电效率大于45%,运行寿命大于5000h。由三菱电机与美国ERC合作研制的内重整30kWMCFC已运行了10000h。三洋公司也研制了30kW内重整MCFC。石川岛播磨重工有世界上最大面积的MCFC燃料电池堆,试验寿命已达13000h。日本为了促进MCFC的开发研究,于1987年成立了MCFC研究协会,负责燃料电池堆运转、电厂外围设备和系统技术等方面的研究,它已联合了14个单位成为日本研究开发主力。
欧洲早在1989年就制定了1个Joule计划,目标是建立环境污染小、可分散安装、功率为200MW的"第二代"电厂,包括MCFC、SOFC和PEMFC三种类型,它将任务分配到各国。进行MCFC研究的主要有荷兰、意大利、德国、丹麦和西班牙。荷兰对MCFC的研究从1986年已经开始,1989年已研制了1kW级电池堆,1992年对10kW级外部转化型与1kW级内部转化型电池堆进行试验,1995年对煤制气与天然气为燃料的2个250kW系统进行试运转。意大利于1986年开始执行MCFC国家研究计划,1992-1994年研制50-100kW电池堆,意大利Ansodo与IFC签定了有关MCFC技术的协议,已安装一套单电池(面积1m2)自动化生产设备,年生产能力为2-3MW,可扩大到6-9MW。德国MBB公司于1992年完成10kW级外部转化技术的研究开发,在ERC协助下,于1992年-1994年进行了100kW级与250kW级电池堆的制造与运转试验。现在MBB公司拥有世界上最大的280kW电池组体。
资料表明,MCFC与其他燃料电池比有着独特优点:
a.发电效率高比PAFC的发电效率还高;
b.不需要昂贵的白金作催化剂,制造成本低;
c.可以用CO作燃料;
d.由于MCFC工作温度600-1000℃,排出的气体可用来取暖,也可与汽轮机联合发电。若热电联产,效率可提高到80%;
e.中小规模经济性与几种发电方式比较,当负载指数大于45%时,MCFC发电系统成本最低。与PAFC相比,虽然MCFC起始投资高,但PAFC的燃料费远比MCFC高。当发电系统为中小规模分散型时,MCFC的经济性更为突出;
f.MCFC的结构比PAFC简单。
固体氧化物燃料电池(SOFC)
SOFC由用氧化钇稳定氧化锆(YSZ)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被氧化,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。
SOFC的特点如下:
由于是高温动作(600-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电。
由于氧离子是在电解质中移动,所以也可以用CO、煤气化的气体作为燃料。
由于电池本体的构成材料全部是固体,所以没有电解质的蒸发、流淌。另外,燃料极空气极也没有腐蚀。l动作温度高,可以进行甲烷等内部改质。
与其他燃料电池比,发电系统简单,可以期望从容量比较小的设备发展到大规模设备,具有广泛用途。
在固定电站领域,SOFC明显比PEMFC有优势。SOFC很少需要对燃料处理,内部重整、内部热集成、内部集合管使系统设计更为简单,而且,SOFC与燃气轮机及其他设备也很容易进行高效热电联产。下图为西门子-西屋公司开发出的世界第一台SOFC和燃气轮机混合发电站,它于2000年5月安装在美国加州大学,功率220kW,发电效率58%。未来的SOFC/燃气轮机发电效率将达到60-70%。
被称为第三代燃料电池的SOFC正在积极的研制和开发中,它是正在兴起的新型发电方式之一。美国是世界上最早研究SOFC的国家,而美国的西屋电气公司所起的作用尤为重要,现已成为在SOFC研究方面最有权威的机构。 早在1962年,西屋电气公司就以甲烷为燃料,在SOFC试验装置上获得电流,并指出烃类燃料在SOFC内必须完成燃料的催化转化与电化学反应两个基础过程,为SOFC的发展奠定了基础。此后10年间,该公司与OCR机构协作,连接400个小圆筒型ZrO2-CaO电解质,试制100W电池,但此形式不便供大规模发电装置应用。80年代后,为了开辟新能源,缓解石油资源紧缺而带来的能源危机,SOFC研究得到蓬勃发展。西屋电气公司将电化学气相沉积技术应用于SOFC的电解质及电极薄膜制备过程,使电解质层厚度减至微米级,电池性能得到明显提高,从而揭开了SOFC的研究崭新的一页。80年代中后期,它开始向研究大功率SOFC电池堆发展。1986年,400W管式SOFC电池组在田纳西州运行成功。
燃料电池
另外,美国的其它一些部门在SOFC方面也有一定的实力。位于匹兹堡的PPMF是SOFC技术商业化的重要生产基地,这里拥有完整的SOFC电池构件加工、电池装配和电池质量检测等设备,是目前世界上规模最大的SOFC技术研究开发中心。1990年,该中心为美国DOE制造了20kW级SOFC装置,该装置采用管道煤气为燃料,已连续运行了1700多小时。与此同时,该中心还为日本东京和大阪煤气公司、关西电力公司提供了两套25kW级SOFC试验装置,其中一套为热电联产装置。另外美国阿尔贡国家实验室也研究开发了叠层波纹板式SOFC电池堆,并开发出适合于这种结构材料成型的浇注法和压延法。使电池能量密度得到显著提高,是比较有前途的SOFC结构。 在日本,SOFC研究是“月光计划”的一部分。早在1972年,电子综合技术研究所就开始研究SOFC技术,后来加入"月光计划"研究与开发行列,1986年研究出500W圆管式SOFC电池堆,并组成1.2kW发电装置。东京电力公司与三菱重工从1986年12月开始研制圆管式SOFC装置,获得了输出功率为35W的单电池,当电流密度为200mA/cm2时,电池电压为0.78V,燃料利用率达到58%。1987年7月,电源开发公司与这两家公司合作,开发出1kW圆管式SOFC电池堆,并连续试运行达1000h,最大输出功率为1.3kW。关西电力公司、东京煤气公司与大阪煤气公司等机构则从美国西屋电气公司引进3kW及2.5kW圆管式SOFC电池堆进行试验,取得了满意的结果。从1989年起,东京煤气公司还着手开发大面积平板式SOFC装置,1992年6月完成了100W平板式SOFC装置,该电池的有效面积达400cm2。现Fuji与Sanyo公司开发的平板式SOFC功率已达到千瓦级。另外,中部电力公司与三菱重工合作,从1990年起对叠层波纹板式SOFC系统进行研究和综合评价,研制出406W试验装置,该装置的单电池有效面积达到131cm2。
在欧洲早在70年代,联邦德国海德堡中央研究所就研究出圆管式或半圆管式电解质结构的SOFC发电装置,单电池运行性能良好。80年代后期,在美国和日本的影响下,欧共体积极推动欧洲的SOFC的商业化发展。德国的Siemens、DomierGmbH及ABB研究公司致力于开发千瓦级平板式SOFC发电装置。Siemens公司还与荷兰能源中心(ECN)合作开发开板式SOFC单电池,有效电极面积为67cm2。ABB研究公司于1993年研制出改良型平板式千瓦级SOFC发电装置,这种电池为金属双极性结构,在800℃下进行了实验,效果良好。现正考虑将其制成25~100kW级SOFC发电系统,供家庭或商业应用。
⑷ 美国evs项目是什么好像是美国国家基金主导发起的。
世界纯电动车、混合动力车和燃料电池车学术会议(International Battery Hybrid and Fuel Cell Vehicles Symposium 简称EVS)是纯电动车、混合动力车和燃料电池领域里世界性的学术会议,由世界电动车协会、电驱动运输协会、欧洲电动车协会和亚太电动车协会主办,每一年半轮流在各大洲举行一次。同期还将举办国际电动车、混合动力车和燃料电池车展览会。本展览会汇集世界各国最新的纯电动车、混合动力车和燃料电池车、零部件以及运行所需要的配套基础设施、服务设施等最新成果。
EVS-16至EVS-22分别于1999年以后的每一年在中国北京、加拿大蒙特利尔、德国柏林、韩国釜山、美国长滩、欧洲摩纳哥和日本横滨举行,每届参展商达数百家。
此次EVS-23将于2007年12月在美国加州阿纳海市举行,参展商预计为300家左右。
节能环保电池项目已列入中国“十一五”科技发展规划,中国政府将在人力、物力、财力等方面继续加大投入力度,加快纯电动车、混合动力车和燃料电池车的科研开发。中国曾组团先后参加了EVS-14至EVS-22的各届会议。代表团内从事纯电动车、混合动力车和燃料电池车开发研制项目的承担单位在相关领域达成了较多的科技合作和经贸开发项目。
为了加强中国与国外的技术交流,协助国内有关科研单位和生产企业了解世界纯电动车、混合动力车和燃料电池、零部件、配套设施等发展方向和最新科研成果,中国将再次组团出席此次会议。
展览会2007年12月2~5日召开,中国代表团除出席EVS-23会议及参观展览会外,在电驱动运输协会(原美洲电动车协会)、亚太电动车协会安排下,计划考察访问美国通用、福特、戴克等美国主要电动车整车、电机驱动系统、能源管理电池、电力电子及相关制造厂商和科研机构等,并就纯电动车、混合动力车及燃料电池、充电装置、电机、驱动系统等方面探讨双方之间的进一步交流与合作。
目前组团的工作正在进行中。
⑸ 中国燃料电池汽车的发展前景如何
中国燃料电池汽车驶向何方?
2000年的第一轮燃料电池汽车试运行高潮过后,世界各国对燃料电池汽车的投入,已从建造示范汽车重新回到加强应用基础研究。因为科学家冷静地认识到,燃料电池汽车要走向商业化,必定是一场需要厚积薄发的“长跑”。
2006年8月17日,是我国燃料电池汽车研制进程中一个特别的日子,由中科院大连化学物理研究所等自主研发的两辆燃料电池观光示范车,在大连市的星海广场投入了交车的试运行,中国的燃料电池汽车又前进了重要的一步。
然而,比起几年前“超越2号”燃料电池汽车等竞相亮相时的情景,此次在大连的燃料电池汽车的试运行似乎显得冷清得多,没有媒体大篇幅的报道,也没有引起圈内专家和坊间百姓过多的讨论。科学家对此显得头脑异常地清醒:“此次它在大连的试运行,主要的目的之一,是为了让公众提高对燃料电池汽车的认识,知道一个浅显的基本道理,虽然目前已经出现全球性的石油高价位局面,但即便将来世界上一滴汽油都没有了,我们还能用氢源燃料电池开车。这也是为将来燃料电池产业化所作的一个舆论准备。另一个目的,就是考核燃料电池的寿命。”
“不是百米冲刺,而是厚积薄发的长跑”
“氢源燃料电池汽车要真正走向商业化不是百米冲刺,而是厚积薄发的长跑。”中国工程院院士、大连化学物理研究所燃料电池工程中心总工程师衣宝廉,谈到燃料电池汽车的未来走向感慨地说,这是经过一连串的实验、试运行得出的结论。
燃料电池是一种高效、环境友好的发电装置,它可以直接将贮存在燃料与氧化剂中的化学能转化为电能。衣宝廉院士介绍,世界上第一轮燃料电池汽车研发高潮在2000年左右,当时,美国、欧洲和日本的各大汽车生产厂家,无不都在加紧开发燃料电池技术,企业界尤其是各大汽车生产厂家看到燃料电池巨大的市场潜力,纷纷投入巨资,组成联盟,进行燃料电池车的相关研究、试验与生产。各大汽车公司,包括奔驰、通用、丰田等都认为,到2004年燃料电池车将能够批量生产,实现产业化。戴姆勒—克莱斯勒甚至宣称,预计届时燃料电池汽车的售价将降至每台约1万8100美元。美国能源部长佩耶1998年在接受《纽约时报》的采访时也作出自己如意的预测:燃料电池进入家庭、汽车和其他领域的步伐将比人们的想象要快得多。
我国关于燃料电池车研究的竞争也非常激烈。长期从事氢源燃料电池研究的中科院大连化物所,早在上个世纪90年代初期,就开始对氢源质子交换膜燃料电池的研究。1996年底,这一研究得到国家科技部、中科院、国家自然基金委的经费支持,并在国家“九五”计划中立项。2000年,大连化物所研发出第一台质子交换膜燃料电池发动机,并与中科院电工所、二汽集团合作,组装出了一台燃料电池中巴车,于2001年进行了试运行。随后不久,又组装了一台30千瓦功率的燃料电池中巴车。“当时,我们许多人都乐观地估计,燃料电池汽车已经到了产业化的前夕。”除大连化物所外,至2004年,国内在北京、上海等地,陆续出现了燃料电池汽车的试运行,当时许多人同样怀有迎接临盆婴儿般的喜悦期待:燃料电池汽车已经“接近‘走出实验室,实行量产’的大门”。
然而,事实却并非预料中的那么乐观。2003年7月,最早将燃料电池汽车投入商业运营之一的日本丰田汽车公司,召回了其出租的6辆燃料电池汽车,并宣布推迟另外6辆燃料电池汽车的租赁。原因是储存氢燃料的高压氢气罐,它在加注氢气时出现了泄漏。几乎与此同时,各个国家都在燃料电池汽车的试运行中,发现了一系列防不胜防、需要马上就解决的难题。目前,国际社会关于燃料电池汽车未来的预测是,“要达到产业化至少要到2015之后”,第二次试运行高潮将出现在2010年左右。
电池寿命决定研究生择业
可以说,2004年左右实现产业化的预测以失败告终,但世界各国对燃料电池汽车研究的热情有增无减。“世界范围内已经‘烧’掉了几百亿美元,市场潜力又十分巨大,谁也不愿意就此停顿下来。”作为我国燃料电池研究的第一代亲历者,衣宝廉院士相当感慨。
当前,国际上燃料电池汽车又进入了第二轮研究,与早些年的热血沸腾、踌躇满志相比,现在人们对燃料电池车的研究持更加冷静的态度。2000年之前,各国主要是投入造车和示范,从2001年到现在,各国在继续进行示范的同时,都将重点重新转向应用基础研究。希望通过研究燃料电池各种基础性的问题,找到解决车用燃料电池寿命问题的根本办法。(例如研究氢能本身的技术问题、制氢和储氢技术、高效的氢能转换技术等。)即找到解决车用燃料电池(汽车的动力源)动态响应、环境适应性与降低贵金属担量等影响电池寿命、成本的办法。
质子交换膜燃料电池具有可在室温下快速启动、负载响应快的特点,成为交通运输领域如电动汽车等和各种可移动电源的最佳候选者。“它作为燃料电池汽车最为核心、最为重要的部件,其实关键也就在那一张膜,现在科研人员希望研究出增强的、自增湿的,在中温120摄氏度左右的复合质子交换膜,以提高燃料电池的寿命和性能,包括如何解决动态响应对电池性能的影响等。”衣宝廉院士说得比较“专业”。
记者在采访中询问,燃料电池观光车在大连试运行,是否预示着它能于近期在全国推广,无论是致力于燃料电池研究已30年的衣宝廉院士,还是大连化物所燃料电池联合实验室主任张华民研究员等,科学家们都显得格外出奇的冷静。张华民指出,燃料电池汽车要成为真正的商品,要与现在非常成熟的内燃机车在各个方面进行竞争,必须解决寿命、成本、稳定性、耐久性、环境适应性等诸多问题,其中最为关键的是寿命和成本问题。
“寿命和成本,是在第二轮应用基础研究中,各个国家首先要早日解决的关键问题。”衣宝廉院士也介绍,对2015年实现氢源燃料电池车商业化的第二次预测能否实现,解决以上两个问题的时间表将起到决定性的作用。其中,摆在第一位的是在2010年左右能否解决电池寿命问题,只有这个问题得到彻底解决,燃料电池汽车才能走向成功,否则一切都无从谈起。但如果燃料电池汽车的电堆动态寿命能达到5000小时以上,接下来的降低成本,主要靠关键零部件的批量生产和降低铂担量,难度相对较低。
现在国际上每辆氢源燃料电池汽车的成本,一般在100万美元到200万美元之间,造价的确非常昂贵,“因为现在这些氢源燃料电池汽车的打造,基本都是人们用一双双手‘抠’出来的,如果能实现流水线上的批量生产,成本自然而然也就降下来。可以说,解决寿命问题是能否实现产业化最关键的判据”。
美国总统布什前些时候曾推断,美国现在的小孩到了今后他们可以开车的年龄,可以方便地买到燃料电池汽车,而且在社区附近就可以加氢。关于燃料电池汽车的产业化期限,衣宝廉也颇有信心地认为,可以用5年的时间解决电池的寿命问题,再用5年的时间解决电池成本问题。
“我认为,出现第二代氢源燃料电池示范车的高峰,应该是在2010年前后。”衣宝廉对自己正带的研究生讲,“你们毕业后的工作好不好找,就看2010年这个节点,如果到时候燃料电池寿命能达到设计要求,说明燃料电池汽车可以实现工业化,届时你们就能找到很好的工作、得到较高的薪酬。”
衣宝廉和布什的推断基本相同,只不过布什的描述更为形象化,科学家的描述更有逻辑性和严谨性罢了。
工程中试放大由谁买单?
“我们大连化物所得到了中科院知识创新工程的支持,前些年基础研究攒下的后劲很足,技术储备雄厚。今年,国内大汽车集团想介入燃料电池发动机的研发,他们经过多方的认真评估,最后燃料电池的研发还是选定大连化物所。这也说明,中科院实施的知识创新工程起了很大作用。”衣宝廉说。
“但应用基础研究只是一方面。我们所虽然取得的成果很多、发表的文章也很多,但是成果一时还不能拿到真正的汽车上应用,就是不能实现工程放大。基础研究与工程中试放大这两张皮的脱节问题该怎么解决?”张华民像是在自问自答。
谈到车用燃料电池的工程中试放大,衣宝廉显得格外忧虑:“工程放大对车用燃料电池的研究非常重要,不进行工程放大、不把我们开发的技术放到真正的汽车上应用,永远不知道我们以后生产出来的车用燃料电池,在汽车开到路上时会出现什么问题。”
张华民介绍,刚刚在大连投入示范运行的两辆观光旅游车,是大连市政府拨款200万元,大连化物所用多年积累的“863”技术设计开发的。其实就是希望通过示范车,检测考验燃料电池技术存在的问题,并通过长时间的运行来发现新问题,以便研究人员在今后的研究中可以对此进行改善,最终推动车用燃料电池技术的发展。
然而,像大连市政府这样富有远见的支持可遇而不可求。张华民说:工程放大始终是制约我国车用燃料电池技术发展的一个瓶颈。目前,政府部门投入的科研经费,主要是用以支持燃料电池的基础研究,那么,工业放大的大笔经费该去哪里找?
“虽然国内很多汽车集团对燃料电池很感兴趣,但是投入工程放大至少需要几千万元,一旦失败,几千万元就一去无返地打了水漂,对企业来说风险实在太大,一般都不敢轻易投入。我虽然同时身兼大连新源动力董事长,但公司的总共股本也就6000多万元,新源动力不是不想冒着风险上项目,但它不是几十万、几百万元的小打小闹,若要投几千万元就显得力不从心,我也说服不了公司各家股东拿这么多的钱来投。”衣宝廉院士苦笑。大连化物所是新源动力股份有限公司的主要股东,衣宝廉是新源动力名义上的“老板”,又是大连化物所实际在编的人员,面临如此棘手的两难选择,他无计可施也情有可原。
“以前发展燃料电池的投资者主要是政府,而今公司已成为发展燃料电池、尤其是燃料电池电动车的投资主体。世界上所有的大汽车公司与石油公司,均已介入燃料电池车的开发。”衣宝廉在他两年前编写出版的《燃料电池》一书中,曾经援引了下面这样一组权威数据:“短短几年时间,投入约80亿美元,研制成功的燃料电池汽车达到41种,其中轿车/旅行车24种、城市间巴士9种、轻载卡车3种。2003年美国又宣布了一个投资25亿美元的发展燃料电池汽车的计划(Freedom Car),其中国家拨款15亿美元,三大汽车公司投资10亿美元。”
燃料电池的工程中试放大究竟该由谁买单?该到哪里去寻找大笔资金的投入支持?这是车用燃料电池技术从“观赏”变成“实用”的关键所在,它成了目前大连化物所科研人员非常“头大”的问题。
诚如衣宝廉院士所说,燃料电池汽车从研制开发,直至最终实现产业化和商业化,是一场需要厚积薄发的长跑,无论是体力,还是毅力和耐力,都对运动员是个严峻考验。
能不能实行政府和企业的AA制,找出一个最合理而且最公平的“买单”办法?
为了今后不仅仅是“观光”
美丽的大连有她的多张名片,比如,大连的美女骑警,大连的星海广场等,现在,大连又有了她的一张新名片。据大连市的一份《燃料电池游览车示范项目实施方案及进展报告》介绍,“中科院大连市新能源示范基地将作为大连市的又一亮丽的名片,进一步提升大连市着眼未来发展及和谐洁净的城市品位。”
大连市已经驶向星海广场的燃料电池示范车,就是大连市新能源示范基地示范内容之一。
由中科院大连化物所和大连新源动力公司共同主持,除了已经完成的燃料电池示范车项目,亦即在星海广场运行的观光游览车,今后还将包括某些公交线路,向大连市各界和前来大连旅游的人士展示不依赖于以石油能源为燃料,而是以氢源为替代燃料、以燃料电池为发动机的未来新能源利用新模式。
不久前,由大连市发改委主持申报成功的国家燃料电池及氢源技术国家工程中心,其建设方案已经得到了国家发改委的认可,正式启动并进入建设阶段。工程中心的重要建设内容之一,就是建立中国燃料电池技术转化和示范的基地。同时由于还决定,在七贤岭高新技术园区内建设大连化物所国家工程中心产业园区、大连市新能源示范基地将建设在该园区。
据知情者介绍,中国科学院、英国BP公司、中国石化公司已表示将参加大连新能源示范基地的建设,大连市政府已对该建设项目进行相关协调和组织推动,国家科技部也将给予相关的经费支持。
大连星海广场上运行的燃料电池观光示范车,作为大连市燃料电池示范车项目内容之一,展示的是相对比较简单的技术。比如为了提高燃料电池的效率和寿命,采用了燃料电池和蓄电池混合,也就是电—电的混合,而不是内燃机和电池的混合,这样车在刚启动的时候,蓄电池可以“帮一下忙”。
星海广场的观光车,燃料电池输出功率只有5kW,储氢容器为碳纤维增强金属瓶。该车在2006年4月至10月运行,也就是说,它在大连市最好的旅游观光季节展示,每天只有5小时,计划运行两年。“反正就是那么两辆观光车,燃料用完了加加氢就可以,燃料电池可以更换。”衣宝廉院士说。
观光车上配有VCD(车载电视),虽然那只是雕虫小技,但也可以从中看出设计者的良苦用心,观光乘车的时候可以随车播放光盘介绍燃料电池技术,“因为新技术的普及首先要让老百姓都理解”。
或许应该为大连市在星海广场的这张名片上,叠加了“新能源示范基地”这张新名片而喝彩。
但我们在为大连市如此举动喝彩的同时,也多少为我国燃料电池汽车未来的产业化进程担忧。
其实,我国拥有燃料电池示范车的城市,大连既不是唯一的一个,更不是最早的一个。据估算,北京市现在最起码就有3台要迎接奥运的示范车,在联合国环境署(UNDP)经费支持下,由清华大学做整体负责单位。北京市预计今年投入使用的公交汽车将达到200辆,这种“零污染”的燃料电池公交汽车上,前端车头的上方,液晶大字赫然显示着“科技示范线”。武汉市也有以武汉理工大学为主研制的示范车。上海市有5台“超越”轿车投入示范,同济大学做整体负责单位。
燃料电池发动机的研制,现在国内的科研主力有中科院大连化物所、上海神力公司,而大连化物所派生出来的新源动力公司,也可算做是三足鼎立其间的一家。新源动力公司主要为上海的“超越”轿车提供发动机,大连化物所则主要为北京城市客车提供发动机。
按国家科技部的要求,参与燃料电池汽车“863”重大专项计划的科研攻关,每个重要的元部件都有两个以上的单位参加竞争。目前,我国主要为轿车提供燃料电池的,是新源动力公司和上海神力公司;主要为城市客车提供燃料电池的,则是大连化物所和上海神力公司。
纵观中国燃料电池的产业化进程,可谓一路跌跌撞撞、步履蹒跚。直至今天,尽管我们的燃料电池汽车还只能是为了“观光”,而不能由寻常百姓真正驾驶着开上通衢长街,但我们依然无畏无惧,继续奋然前行。
当然,即使走到“观光”这一步,中国燃料电池汽车技术已属不易;但它的下一步,它从“样品”和“展品”变成真正的规模产品,仍是清晰可见的一路坎坷。
正像衣宝廉院士所表示的,如果不能经受这场考验,“行百里,半九十”,只能半途而废;如果没有这样的心理准备,一旦前功尽弃,只能追悔莫及。
⑹ 燃料电池电动汽车商业化存在的问题 这个论文哪里可以下载的到
综述了燃料电池电动汽车商业化存在的9个方面的问题,这些问题解决的程度和速度,关系到燃料电池电动汽车商业化的时间问题。这些问题可以分为两类:性能与成本问题和燃料供应与基础设施问题。介绍了解决这些问题的方法以及与此相关的研究方向和热点
⑺ 2007诺贝尔奖
你设置浏览器的主页是什么(网址):
www..com
你收藏了哪些网页(名称):
http://..com/question/26701530.html?si=1
http://..com/q?word=%C5%B5%B1%B4%B6%FB%BD%B1&ct=17&pn=0&tn=ikaslist&rn=10
你用的是哪个搜索引擎(网址):
www..com
根据下面的问题,先提炼关键词再上网搜索,看谁搜索得最快最准,记下搜索的关键词:
1、 诺贝尔奖是哪一年设立的?
你用的关键词是:诺贝尔奖的成立时间
你搜索到的答案是:
诺贝尔奖 (Nobel Prize) 创立于1901年
2、 诺贝尔奖设立了哪些奖项?
你用的关键词是:诺贝尔奖设立了哪些奖项
3、 你搜索到的答案是:?
物理奖,化学奖,和平奖,生理与医学奖,文学奖
4、 首位获得诺贝尔奖的华人是谁?
你用的关键词是:首位获得诺贝尔奖的华人是谁
你搜索到的答案是:
首位诺贝尔物理学奖得主--杨振宁
5、 到目前为止有多少华人获得过诺贝尔奖?分别是哪些人?
6、 你用的关键词是:到目前为止有多少华人获得过诺贝尔奖?分别是哪些人?
你搜索到的答案是:
首位诺贝尔物理学奖得主--杨振宁
首位诺贝尔物理学奖--李政道
第三位诺贝尔物理学奖华人得主——丁肇中
第四位获诺贝尔物理学奖的华人--朱棣文
第五位诺贝尔物理学奖华人得主——崔琦
7、 今年(2007年)获得诺贝尔奖的是谁?得了什么奖项?(加油题)
你用的关键词是:获得诺贝尔奖的是谁
你搜索到的答案是:
诺贝尔生理学或医学奖 :
美国科学家马里奥-卡佩奇和奥利弗-史密西斯、英国科学家马丁-埃文斯
诺贝尔物理学奖:
法国科学家阿尔贝·费尔和德国科学家彼得·格林贝格尔
化学奖授予德国科学家格哈德•埃特尔
8、 搜索一下有关于诺贝尔身平成长小故事,等会请你来讲一讲哦!(提高题)
你用的关键词是:诺贝尔身平成长小故事
你搜索到的答案是:诺贝尔1833年出生于瑞典首都斯德哥尔摩。诺贝尔到了8岁才上学,但只读了一年书,这也是他所受过的唯一的正规学校教育。到他10岁时,全家迁居到俄国的彼得堡。在俄国由于语言不通,诺贝尔和两个哥哥都进不了当地的学校,只好在当地请了一个瑞典的家庭教师,指导他们学习俄、英、法、德等语言,体质虚弱的诺贝尔学习特别勤奋,他好学的态度,不仅得到教师的赞扬,也赢得了父兄的喜爱。然而到了他15岁时,因家庭经济困难,交不起学费,兄弟三人只好停止学业。诺贝尔来到了父亲开办的工厂当助手,他细心地观察和认真地思索,凡是他耳闻目睹的那些重要学问,都被他敏锐地吸收进去。
⑻ 能不能简述下燃料电池材料的发展历程啊有急用,谢了啊。。。
燃料电池在发达国家的研究进展非常迅速。目前,已研制成功11MW、5MW、1MW的示范性磷酸燃料电池,并已经投入运行。由美国西屋公司在97年研制的固体氧化物燃料电池堆,已经成功地在日本东京和大阪两个城市试验完毕。美国国际燃料电池公司生产的PC-25型号的燃料电池最大功率可达200KW,目前已经进入了批量生产阶段。该公司所提供的4.5MW和1MW电池堆已经于98年在日本进行了调试运行。同时,美国政府也十分支持燃料电池的开发,2000年美国预计对燃料电池的开发经费为4000万美元,据报道,2001年度的预算申请额急剧增加到了1亿美元。此外,安装一定功率的燃料电池供电设备,政府还会给予总费用1/2的补贴。由于具有友好的开发环境,许多企业都加入到开发燃料电池的行列之中。我们邻国日本从八十年代起开始研究和开发燃料电池。分别制定了1978年的“月光计划”和1993年启动的“新日光计划”。经过阶段性研究,日本在1981年由东京电力公司研制出了4500KW,接着1989年又推出了11000KW燃料电池装置。1989年的11000KW燃料电池装置,是由美国通用电力和日本东芝合资公司共同开发的IFC,它堪称是世界上最大的磷酸型燃料电池发电厂。
同样,我国在燃料电池开发中进行了许多研究工作。燃料电池在中国的研究起步比较晚,虽然早在上个世纪60年代末,我国科学家就已经开展了对燃料电池的研究。然而,由于种种原因,在七十年代后期许多研究就相继停止了。这导致我国的燃料电池技术与世界先进水平差距较大。进入了九十年代初,由于国外民用燃料电池的迅速发展,我国又兴起了对燃料电池的研究热。我国的质子交换膜燃料电池(PEMFC)技术研究在“九五”期间被列为国家“九五”计划中重大科技攻关项目之一,在国家自然科学基金会、“863”计划和国家科委等的支持下,目前有一大批高等院校如清华大学、北京科技大学、上海交通大学、武汉大学、华南理工大学等都加入到了燃料电池的基础理论研究中来,大连化物所、天津电源研究所、北京福源公司、上海神力科技有限公司等在PEM燃料电池技术的研究方面都取得了重要成[4],在“十五”期间,我国的燃料电池技术可望得到突破性进展。通过十几年的不懈努力,在燃料电池技术方面的研究我国已经取得了很大的进展,特别是在PEM燃料电池方面,但由于我们起步比较晚,很多技术仍然处于科研阶段。国家科技部和中国科学院在“九五”中安排了“燃料电池技术”攻关项目,以大连化物所为牵头单位,在全中国开展了PEM燃料电池的电池材料与电池系统的研究。旨在开发具有自主知识产权的燃料电池技术,主攻PEM燃料电池。目前以纯氢为燃料的30kW PEM燃料电池为动力的中巴车,已于2001年1月成功运行,该电池堆整体性能相当于奔驰、福特与加拿大巴拉德公司联合开发的MK7PEM燃料电池电动车的水平。该中巴车是我国第一台真正意义上的燃料电池驱动的电动汽车,拥有自主的知识产权,将对我国的环保、能源及交通等领域产生深远的影响,开辟了绿色动力的新纪元[5]。
综上所述,目前燃料电池技术已处于商业化的前夜,阻碍燃料电池商业化的最大障碍目前有两个:一个是成本,另一个是氢源。国际上正在开发燃料电池批量生产技术,研制新电池材料,进一步降低成本。尽管PEM燃料电池具有高效、环境友好等突出优点,但目前只能在特殊场所应用和试用。若作为商品进入市场,必须大幅度降低成本,使生产者和消费者均能从中获得利益。如作为电动车动力源,PEM燃料电池造价应能与汽油、柴油发动机相比(约50$/kW),若作为各种便携式动力源,其造价必须与各种化学电源相当。尽管国际上主要汽车公司都正式宣布在2007年实现燃料电池汽车的商业化,但仍在许多问题有待解决,而且有些问题至今没有找到解决的方法,随着研究开发的深入,还必然会产生一些新问题。同时科学家们也在不断开发可用氢的来源,目前可用氢的主要来源有两类:一类是纯氢,其技术已经成熟,但需要建立加氢站;另一类是甲醇或重整制氢,技术还需要进一步完善。专家估计,最早进行商业化的燃料电池汽车在2006—2008年可进入市场。在国内,千瓦级PEM燃料电池方面已基本完成试运行,具备了商业化开发的能力,该技术在国际上也产生了一定的影响。但用于刚刚起步的电汽车,还需要进一步加强研发力量,多完成一些技术上的突破, 使我国的汽车产业在短时间内赶超发达国家水平,保护地球环境的重要性今后将尤为突出,所以21世纪以燃料电池为动力的交通体系有望得以实现,同时可以更好地改善城市中汽车污染严重等问题。
⑼ 化学中什么专业或者方向和太阳能或者燃料电池等新能源行业比较对口
太阳能,风能等新能源---电子系、材料系、物理系
太阳能虽然已经在生活中投入使用,但因为太阳能电池转化效率低、价格昂贵,不能大规模的推广。因此,太阳能的进一步研究也获得了较多的研究经费。其中光电材料、电子光声伏打学为研究领域之一。以Tufts大学为例,电子系就在该领域引入了新的教授。太阳能专业的同学,工作形势不错,尤其是美国中西部太阳能丰富的地区。比如新墨西哥和亚利桑那州,都有很大的太阳能研究中心。在美国北部,例如波士顿,也有很多从事太阳能开发的公司。University of Delare、Arizona State University、Georgia Institute of Technology、Penn State University、Caltech、 MIT、Cornell University等大学拥有太阳能研究中心。
欧洲(尤其是德国)、以色列、日本在太阳能开发上获得了政府很大的支持,因此实力也很强。美国位于科罗拉多州的National Renewable Energy Lab在太阳能研究方面是美国第一的研究中心。
风力发电方面,也是一个大的发展趋势。其中以北卡大学实力最为雄厚。德国和丹麦风力发电技术处在世界前列。
2.燃料电池-化学系、化工系、材料系、环境系
燃料电池显然是现在的研究热点。每年美国的物理协会年会、化学协会年会、材料协会年会上,到处可见燃料电池的研究进展。哥本哈根会议以后,必将加大这块领域的技术革新和产业化进程。
美国位于加州大学尔湾分校(University of California, Irvine)的National Fuel Cell Research Center (NFCRC), 是美国最著名的燃料电池研究中心。康涅狄格大学(University of Connecticut)的Connecticut Global Fuel Cell Center资金和科研力量也很雄厚,另外还有,Michigan的Kettering University、Ohio的Case Western Reserve University、Stark State College以及南卡大学(University of South Carolina)的 Center for Fuel Cell Research。南卡大学的这个研究中心,是美国国家自然基金支持的唯一一个燃料电池研究中心。
除了美国以外,加拿大、德国、日本、英国的燃料电池技术发展也很迅速。比如英国的Imperial College of Science、University of Birmingham、University of Nottingham、University of Oxford, 德国的University of Stuttgart、Ruhr University – Bochum、University of Duisburg,日本的University of Miyazaki、Yamanashi University、Chubu University、Kogakuin University,加拿大的McMaster University、Royal Military College of Canada、University of Victoria University of Waterloo等。日本的本田汽车、德国的奥迪汽车都有自己的燃料电池研发部门。
摘要仅供参考。
⑽ 科技型中小企业创新基金的优先支持领域
2020年最新:
2020年创新资金的资助额度
定额资助,每项资助额度10万元,主要用于补贴企业上年度的研发经费,各区政府对本辖区推荐的项目按不低于其实际获得的市拨付经费额度予以配套资助。
也就是说,立项企业可以获得20万元/项的资金补助。
项目填报时间
1、项目填报起始时间:2020年2月24日
2、项目填报截止时间:2020年3月12日
注:项目申报采用网上申报方式,无需送交纸质材料。项目申报时间紧迫,名额有限,。
重点支持领域
重点支持新一代信息技术、高端装备制造、生物产业、新能源、新材料、节能环保、新能源汽车等战略性新兴产业以及科技服务业(技术转移、科技新媒体等)领域的科技型中小企业。
其中,运用新技术新模式应对疫情防控的科技型中小企业优先予以支持。
申报条件
面向无知识产权纠纷,无不良记录的非上市科技型中小企业。需满足以下条件:
1、企业上年度营业收入不超过3000万元;
2、职工总数不超过300人,其中直接从事研究开发的科技人员占比不低于10%;
3、上年度企业研发经费不低于当年营业收入的5%,且已完成的研发经费应不低于40万元(已享受创新资金补助的研发经费不得重复计算),并提供100%已完成研发经费记账凭证清单(明细账);
4、同一企业获得创新资金资助的次数不超过3次;
5、承担过创新资金的企业,以下情况之一的,不予支持:
1)立项项目还在执行中,2019年12月31日前尚未验收;
2)立项项目验收不合格,时间未超过3年;
3)立项项目被终止,时间未超过5年。