导航:首页 > 基金投资 > 量化云投资

量化云投资

发布时间:2021-07-20 02:21:45

① 量化投资的前景

随着20世纪80年代以来各类证券和期权类产品的丰富和交易量的大增,华尔街已别无选择,不用这些模型,不使用电脑运算这些公式,他们便会陷于困境,自招风险。1997~1998年亚洲金融危机,市场暴跌,量化投资的算法交易也起到了同样的坏作用。此外,始于2007年的金融危机中,量化投资也未能幸免。时过境迁,2011年,量化基金再次表现优异。
稍微接触到资本市场的人,大都听说过基本面投资和价值投资,而对于这方面的天才人物“股神”巴菲特,更是几乎家喻户晓,妇孺皆知。他以企业财务报表的分析见长,擅长挖掘企业的内在价值,一旦买入便长期持有,持续获得稳定高额收益,为股东创造了丰厚利润,无人能及。
相比之下,与价值投资同等重要的量化投资——即借助数学、物理学、几何学、心理学甚至仿生学的知识,通过建立模型,进行估值、择时及选股,则没有那么幸运——在大多数人眼里,量化投资是一个神秘的领域,深不可测,玄奥无比,令人望而却步。世人皆知巴菲特,而对于号称最能赚钱的基金经理人、在20年的时间里创造了年均净回报率高达35%惊人传奇的量化投资大师西蒙斯,却只能成为少数人的专属。
量化投资看似神秘,但并不古老。它从70年代开始逐渐兴起,90年代才大行其道。之所以如此,是因为量化投资有其诞生的特定土壤,需要一系列的条件方能破土而出,这些条件其实相当苛刻。
很难想象,量化投资技术并非发端于华尔街,而是肇始于学术象牙塔里的少数“怪才”,他们长期不被正统的经济学所接受,甚至遭到排斥,因此处境艰难。1952年3月发表“投资组合选择”论文、提出现代财务和投资理论最著名洞见的马克维茨,以该理论参加博士答辩,竟然战战兢兢差点未获通过。1990年10月,这些人中有三位获得诺贝尔经济学奖,当时局外人很少有人清楚为什么他们能够得此殊荣;而三人中的其中一位则将他们的获奖比作“芝加哥业余球队赢得了世界杯”。
但是,没有来自象牙塔的现代金融理论,便没有量化投资的兴起。马克维茨的投资组合理论,提出了风险报酬和效率边界概念,并据此建立了模型,成为奠基之作。托宾随后提出了分离理论,但仍需要利用马克维茨的系统执行高难度的运算。
夏普1963年1月提出了“投资组合的简化模型”,一般称为“单一指数模型”。马克维茨模型费时33分钟的计算,简化模型只用30秒,并因节省了电脑内存,可以处理相对前者8倍以上的标的证券。1964年,夏普又发展出资本资产定价模型(CAPM),这是他最重要的突破,不仅可以作为预测风险和预期回报的工具,还可以衡量投资组合的绩效,以及衍生出在指数型基金、企业财务和企业投资、市场行为和资产评价等多领域的应用和理论创新。
1976年,罗斯在CAPM的基础上,提出“套利定价理论”(APT),提供一个方法评估影响股价变化的多种经济因素。布莱克和斯克尔斯提出了“期权定价理论”。莫顿则发明了“跨期的资本资产定价模型”。
有趣的是,不少人最初并非经济学家,如巴契里耶和布莱克原先是数学家,夏普则从事医学,奥斯伯恩为天文学家,沃金与坎德尔是统计学家,而特雷诺则是数学家兼物理学家。他们转行都是被金融市场研究所深深吸引,沉迷于其中的无穷魅力。
然而,仅有现代投资(行情 股吧 买卖点)理论的建立,及各类模型的完善与推陈出新,并不会直接催生出量化投资,它还需要其他几个重要前提条件,比如机构投资者在市场中占据主导,电脑技术足够发达,以及传统华尔街投资家的傲慢被市场击溃转而被迫接受新的投资理念。
量化投资不会出现在个人投资者为主的时代。个人投资者既缺乏闲暇的时间,也普遍无此能力。随着退休基金和共同基金资产的大幅增加,它们成为市场上的主要机构投资者,并委托专业机构进行投资操作。管理大规模资产,需要新的运作方式和金融创新技术,同时专业的投资管理人也有能力和精力专注地研究、运用这些技术。
没有发达的电脑技术,量化投资也将成为无源之水,无米之炊。在电脑革命发生前,根本无法根据上述模型进行运算。1961年,与马克维茨共同获得1990年诺贝尔奖的夏普曾说,当时即使是用IBM最好的商用电脑,解出含有100只证券的问题也需要33分钟。当今,面对数不胜数的证券产品,以及庞大的成交量,缺了先进电脑的运算速度和容量,许多复杂的证券定价甚至不可能完成。
量化投资在不经历市场的崩盘,傲慢投资者的自信未被摧毁之前,不会盛行。比较早的时候,华尔街对学术界把投资管理的艺术,转化成通篇晦涩难懂的数学方程式一直持有敌意。他们认为,投资管理需要天赋、直觉以及独特的驾驭市场的能力,基金经理可以独力打败市场,而无需依靠那些缺乏灵魂、怪异的数学符号和缥缈虚幻的模型。在美国,70年代初期表现最佳的基金经理人从未听过贝塔值,并认为那些拥有数学和电脑背景的学者只是一群骗子。
1973~1974年美国债券市场和股票市场全面崩盘,明星基金经理人烟消云散,财富缩水堪比30年代大萧条。当时,颇有先见的投资顾问兼作家彼得·伯恩斯坦认为,必须采用更好的方法管理投资组合,并创办了《投资组合》杂志,一出刊便获得成功。此后,随着80年代以来各类证券和期权类产品的丰富和交易量的大增.量化投资光彩炫目,但也具有魔鬼般的力量。它时而风光无限,但也常常坠入深渊。
1987年10月大股灾,黑色星期一,当天股市期货成交量高达令人吃惊的410亿美元,价值瞬间缩水6000亿美元。很多股份直接通过电脑而不是经由交易所交易。一些采用投资组合保险策略的公司,在电脑模式的驱使下,不问价格机械卖出股票。很多交易员清楚这些投资组合会有大单卖出,宁愿走在前面争相出逃,加剧了恐慌。针对整个投资组合而非单个证券,机械式的交易,电脑的自动操作,使得这种量化投资出现助跌之效,大量的空单在瞬间涌出,将市场彻底砸垮。
在此次亚洲金融危机中,著名的长期资本管理公司,这家来自学术象牙塔的怪才充斥、主要运用量化投资技术的对冲基金,曾经在市场上呼风唤雨、无往不利,但偏偏遭遇俄罗斯国债违约这一小概率事件,陷入破产之境,迫使美联储集华尔街诸多投资银行之力,加以救助。此外,始于2007年的金融危机中,量化投资也未能幸免。
虽然麻烦不断,但量化投资依然必要且有效。要知道,在本次金融危机发生前,量化基金的表现连续8年超过其他投资方式。当然,挫折也会带来量化投资技术的更新和完善,比如在模型中设定新的变量,尤其是加入以往并未包含的宏观经济参数。时过境迁,2011年,量化基金再次表现优异。虽然量化投资能否就此再度复兴仍属未知,但由本文先前的讨论,漫漫历史长河,此一趋势已不可逆转,量化投资依然拥有光明的未来。
德意志银行的董事总经理、全球量化投资主管罗崟先生在激烈的竞争中脱颖而出,夺得全球最权威的《机构投资者》期刊2011年美国和欧洲量化分析第一名的佳绩。在华尔街40余年排名史上,罕有华人获此殊荣。《金融时报》慧眼识金,就此专门做了访谈,并嘱我就量化投资写篇评论。我欣然命笔,并借此祝愿量化投资在中国的资本市场上,能够早日生根。

② 四川量化云投资有限公司怎么样

四川量化云投资有限公司是2014-04-24在四川省成都市注册成立的有限责任公司(自然人投资或控股),注册地址位于成都市高新区府城大道西段399号8栋8层3号。

四川量化云投资有限公司的统一社会信用代码/注册号是510000000378654,企业法人杨德成,目前企业处于吊销状态。

四川量化云投资有限公司的经营范围是:(以下范围不含前置许可项目,后置许可项目凭许可证或审批文件经营)项目投资;社会经济咨询。(依法须经批准的项目,经相关部门批准后方可开展经营活动)。在四川省,相近经营范围的公司总注册资本为15498833万元,主要资本集中在 5000万以上 和 1000-5000万 规模的企业中,共6337家。

通过爱企查查看四川量化云投资有限公司更多信息和资讯。

③ 量化投资方面,有哪些好的论坛或者网站

微量网不错,

微量网是国内顶尖的量化投资策略在线交易平台,策略提供者和理财投资者的对接平台。网站集投资策略研发、销售、交易为一体,投资者无需安装软件,通过网页或手机控制云端的交易账户,运行投资策略,进行7*24小时无人值守的全自动交易。使命:微量网致力于打造安全、便捷的策略交易平台,带来简单、极致、高效的理财投资体验。愿景:建立理财投资者与策略提供者之间的桥梁。

这个平台上有各种各样的策略,主要是针对国内外交易所的品种,同时配合还有用户论坛,便于策略师和用户间交流,一边用策略一边看大家的讨论,感觉比较爽一些,也是边用边看。

再补充2个个人觉得不错的:
elitetrader

EliteTrader.com is a group of financial traders that helpeach other
work through the tough and lonely journey of tradingprofitably. Our
members learn faster, develop new relationships, and avoidcostly
mistakes through daily collaboration.
这里讨论的话题比较全,很棒!
Collective2

collective2.com 19,000 traders. 58,000 strategies.

Copy the world's best traders in your brokerage account.

Choose your trade leader

Then Follow their trades automatically.
国内使用的话建议使用微量网确实是很不错的量化投资网站。希望可以帮助题主。

④ 目前国内进行量化投资的个人多不多

近年来,随着证券市场规模的不断扩大,金融衍生产品不断推出, 投资策略和盈利模式发生根本性改变,投资复杂程度日益提高,导致证券市场投资者的构成比例出现了相应的变化。专业投资管理人的占比越来越大,且有加速之势。另一方面,量化对冲投资策略以其中低风险稳定收益的特性,将成为机构投资者的主要投资方向之一。一、量化对冲业务特点及服务要求量化对冲是一项业务特点鲜明、极具专业性、配套服务要求高的业务,其业务特点表现为:(一) 投顾专业化水平高。量化对冲业务对管理人在数据挖掘、策略开发、程序化交易等IT 技术研发能力要求很高。根据海外经验证明,从事量化对冲投资的管理人均为专业机构投资者,专业背景来自物理、数学、统计、计算机等领域的高端人才,需要具备量化投资模型的开发能力及持续的模型优化能力,具有一定的行业进入门槛。分支机构在识别和扶植量化对冲管理人方面也必须具备一定的鉴别能力,避免付出大量精力而收效甚微。(二) 量化对冲业务存在天然的地域分布。与公募基金公司布局相类似,目前主要的量化对冲管理人大都集中在上海、北京、深圳等几大金融市场活跃区域,与公司各地区量化对冲业务发展不均衡的情况相吻合。(三) 产品风险相对较低。目前市场上的量化对冲产品多以市场中性策略为主,对冲证券市场系统性风险,相较于传统方向型的权益类产品,在控制产品回撤和获取稳定收益方面具备较大的优势。随着卖空机制的不断完善,对冲策略将逐渐丰富,例如:统计套利、多空策略、配对交易等。(四) 业务落地要有专门的支持团队。据近年来推广量化对冲业务的实际操作经验,在业务执行层面需要落地营业部协调的技术问题就很多,各营业部须配备专业的业务团队进行支持,快速响应和解决存在的问题。实际情况是大部分营业部没有足够的人力、财力和物力,用于配臵专业的支持团队。根据开展量化对冲业务的以上特点,对券商提出了较高的综合服务要求:(一) IT 系统要求高。量化对冲业务模式对于IT 系统都具有极高要求,一方面体现在交易系统及行情数据响应速度稳定高效,另一方面体现在系统整合及开发易用性。(二) 策略研发需求高。随着金融创新工具的不断推出,量化对冲管理人只有具备持续策略开发和策略优化的能力才能取得稳定、优秀的投资业绩,需要我公司提供强大的策略研究以及策略交流等支持。(三) 产品设计和发行要求高。量化对冲业务发展的必由之路, 是以产品化的模式实现规模效益扩大生产力,投资管理人需要券商提供SPV 设计(如信托、公募、资管等法律结构安排)、提供产品结构设计、风险控制、后台运营和营销组织等全方位的一揽子配套服务, 与证券公司在产品设计的专业能力、统一营销的组织能力和整合公司总部资源能力相匹配。二、量化对冲业务的发展现状
(一) 投资管理人或直接投资者专业化水平参差不齐
目前,市场上量化对冲投资管理人按专业水平大致分为三大类:
第一类:专业水准极高的管理人或投资人,拥有多年的投资经验,拥有自主开发的量化交易系统,有专门的策略研究团队,有实盘过往业绩表现,有持续的生存能力。此类管理人既有自学成才的,也有从 海归加盟的,来自成熟市场有经验的管理人在逐步增加;
第二类:正在成长过程中的管理人或投资人。此类管理人有较好的国内证券市场投资经验和过往业绩,学习能力强,应变能力强,正在成为量化对冲业务的新生力量;
第三类:专业能力欠缺,只有愿望,没有专业支撑,被动依赖技术平台而操作的管理人或是直接投资人,对量化对冲业务一知半解甚至完全不懂,根据策略交易系统发出信号被动投资,预计此类管理人 (投资人)难以应对市场变化,很快就会因束手无策而离开市场。
(二) 从券商或营业部提供的服务支持来看,专业化水准和服务支持能力也参差不齐。
主要分为三类:
第一类:由专业的团队支撑,有系统的技术支持、策略支持和服务支持;
第二类:正在起步阶段的券商,但他们也有可能后发制人,定位精准,整合资源,成为量化对冲市场的主力服务机构;
第三类:没有能力支持量化对冲业务。既无技术支持,也无专业服务团队,更谈不上策略支持。业务发展处于自生自灭的状态,业务也处于很大的波动中。

⑤ 量化投资用什么编程语言研发策略好呢

么以下我就以程序语言的角度来回答
当然如果已经会了某些语言,那你可以使用熟悉的语言去找版网上的学习资源权会比较快
如果没有特别熟悉的语言,或者是愿意多学一种非常好用的语言
我的建议是学习Python

我从以下几点来分别说明

平台资源

国内外使用Python做云端回测以及运算的免费平台相当的多,例如有 宽客在线,发明者量化,优矿, 等等不胜枚举,可以使用平台的支持以及社区的互相帮助来学习

容易学习

综合以上所说,"目前的环境底下" 我推荐Python.(推荐直接下载 Anaconda的集成开发环境)

⑥ 中金创联云量化的投资风险和收益怎么样

要是能够承受5%的风险,大概一年能赚35%-40%的利润。要是能够承受10%的风险,大概一年能赚60%-80%的利润。从以前的客户收益情况来看一年下来没有赔钱的就是赚的多与少了。

⑦ 量化投资都需要哪些数学基础知识

既然说到用数学模型,那数学和统计学的知识是必不可少的。由于国内金融市场尚不完备,一些衍生品交易受到限制,所以相较国外市场,能用到的数学/统计学知识也要少一些。对于非理工背景的投资者,需要补充基础的高等数学,线性代数,概率论,统计学,最优化理论等等学科的知识,这些内容可以在高校教科书中找到。对于一些新兴的利用机器学习的交易策略,还需要了解一些数据挖掘的知识。但既然是入门,这部分自然不是必要的。

另外,计量经济学的应用尤其广泛。进行策略研究时经常要面对大量的时间序列、面板数据。虽然在实践过程中更加注重策略结果,只要能赚钱的策略就是好策略,但在严谨的计量理论的支持下,回归结果更准确,能更好的刻画数据背后的关系,故往往更容易得到与预期相近的结果。其中,时间序列回归与截面、面板回归的逻辑与假设均有较大区别,且广泛用于刻画及预测金融资产的收益,波动。计量经济学的书籍推荐伍德里奇的《计量经济学导论:现代观点》;时间序列推荐布鲁克斯的《金融计量经济学导论》。

想学量化交易?做好这五点准备 https://www.youxiagushi.com/main/viewthread.php?tid=346169

⑧ 量化投资策略到底什么是量化投资

  1. 量化投资策略就是利用量化的方法,进行金融市场的分析、判断和交易的策略版、算法的总称权。

  2. 量化投资策略类型包括:

    (1) 趋势判断型量化投资策略,判断趋势型是一种高风险的投资方式,通过对大盘或者个股的趋势判断,进行相应的投资操作。如果判断是趋势向上则做多,如果判断趋势向下则做空,如果判断趋势盘整,则进行高抛低吸。这种方式的优点是收益率高,缺点是风险大。一旦判断错误则可能遭受重大损失。所以趋势型投资方法适合于风险承受度比较高的投资者,在承担大风险的情况下,也会有机会获得高额收益。

    (2) 波动率判断型量化投资策略,判断波动率型投资方法,本质上是试图消除系统性风险,赚取稳健的收益。这种方法的主要投资方式是套利,即对一个或者N个品种,进行买入同时并卖出另外一个或N个品种的操作,这也叫做对冲交易。这种方法无论在大盘哪个方向波动,向上也好,向下也好,都可以获得一个比较稳定的收益。在牛市中,这种方法收益率不会超越基准,但是在熊市中,它可以避免大的损失,还能有一些不错的收益。

⑨ 量化投资课程有没有推荐的

推荐点金世界上的云课堂>网格交易法课程,分为中轴网格交易法、波段111网格交易法,有点金世界的交易团队由2016年开始打磨探究出来的一套方法论。

我们来推演一下这个过程,看看网格交易的盈利是怎么实现的:假设以价格为起始点,以100点为网格间距,向上向下布置好网格。首先在价格分别建一张多单和一张空单,当行情上涨100点触碰到价格②时,在价格建立的多单已盈利100点,此时卖出完成一笔交易,同时再分别建一张多单和一张空单,此时在价格②共持有一张多单和两张空单。当行情下跌回价格时,在价格②建立的空单进行盈利平仓,并建一份多单,因此前在价格建立的空单未平仓,所以这里不再重复建空单,此时在价格持有两份多单和一份空单。行情继续下跌触碰到价格,在价格所建的空单进行盈利平仓,同时再建一份多单和一份空单,此时价格持有3份多单和1份空单。行情继续下跌触碰到价格,价格所建的空单进行盈利平仓,同时再建一份多单和一份空单,此时价格持有4份多单和1份空单。价格反弹至价格时,价格所建的多单进行盈利平仓,并建一份空单。

最后账户持有3份多单2份空单,3份多单浮动亏损为:2*100(点)+1*100(点)=300,2份空单浮动亏损为:1*100(点)=100,总的浮动亏损为300+100=400;

多单平仓了2次,空单平仓了3次,因此平仓盈利为5*100(点)=500;

在不考虑手续费的情况下,实际盈利=平仓盈利-浮动亏损=100;

阅读全文

与量化云投资相关的资料

热点内容
股票保变电器 浏览:460
理财沪深 浏览:558
融资沉淀效应 浏览:921
来亿财富酒价格 浏览:423
宝钢5月份价格政策 浏览:344
口子窖酒股票价格多少钱 浏览:958
淄博公司融资 浏览:237
武汉君之创投资有限公司 浏览:110
海通期货出金 浏览:333
全球外汇平台排行 浏览:28
没买基金很后悔 浏览:876
PayPal股票 浏览:750
有关投资心理的书籍 浏览:84
信托工程 浏览:940
pfa理财 浏览:260
哪些活期理财有签到金 浏览:445
融资经验交流 浏览:354
外汇玩的心跳 浏览:697
月美元汇率今日对人民币 浏览:127
炒外汇入门图解 浏览:636