导航:首页 > 基金投资 > 大数据风险投资

大数据风险投资

发布时间:2021-07-24 18:27:19

⑴ 将大数据技术运用于投资靠谱吗

我觉得还是挺靠谱的。比如,我们可以将投资者行为数据化,这种技术可以更为直接和精准的体现出投资者对于行业的关注程度等等。比如,现在的大数据技术已经可以运用于风投行业数据库了。据我所知,投中信息研发的CVSource就是通过网络采集、调研访问、数据合作等多种渠道保证数据的完整性,还利用大数据分析挖掘技术与人工运营相结合的方式保证数据的准确与更新的及时。因此,我觉得大数据技术运用于风投行业还是很有发展前景的。

⑵ 大数据会颠覆风投行业吗

大数据是一种技术和思维,还是要看风投有什么关键问题是可以通过大数据来更好解决的。我认为现在还比较早期,风投行业面对的数据,一般都是线下收集的,并且也不够大数据。

⑶ 如何利用大数据做金融风控

大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。

金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。

传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据 纬度为十个左右,包含年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人 的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。普惠在线

互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中,首先还是利用信用属性强的金融数据,判断借款人的还 款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充,一般是利用数据的关联分析来判断借款人的信用情况,借助数据模型来揭示某些行为特征和信用 风险之间的关系。

互联网金融公司利用大数据进行风控时,都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。

常用的互联网金融大数据风控方式有以下几种:

验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以借助国政通的数据来验证姓名、身份证号,借助银联数据来验证银行卡号和姓名,利用运营商数据来验证手机号、姓名、身份证号、家庭住址。

如果借款人是欺诈用户,这五个信息都可以买到。这个时候就需要进行人脸识别了,人脸识别等原理是调用国政通/公安局 API接口,将申请人实时拍摄的照片/视频同客户预留在公安的身份证进行识别,通过人脸识别技术验证申请人是否是借款人本人。

其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
分析提交的信息来识别欺诈

大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷和学生贷都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往 往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相 同、单位名称相同、甚至居住的楼层和号码都相同。还有一些填写假的小区、地址和单位名称以及电话等。

如果企业发现一些重复的信息和电话号码,申请人欺诈的可能性就会很高。

分析客户线上申请行为来识别欺诈

欺诈用户往往事先准备好用户基本信息,在申请过程中,快速进行填写,批量作业,在多家网站进行申请,通过提高申请量来获得更多的贷款。

企业可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等,如果这些申请时间大大小于 正常客户申请时间,例如填写地址信息小于2秒,阅读条款少于3秒钟,申请贷款低于20秒等。用户申请的时间也很关键,一般晚上11点以后申请贷款的申请 人,欺诈比例和违约比例较高。

这些异常申请行为可能揭示申请人具有欺诈倾向,企业可以结合其他的信息来判断客户是否为欺诈用户。
利用黑名单和灰名单识别风险

互联网金融公司面临的主要风险为恶意欺诈,70%左右的信贷损失来源于申请人的恶意欺诈。客户逾期或者违约贷款中至少有30%左右可以收回,另外的一些可以通过催收公司进行催收,M2逾期的回收率在20%左右。

市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。

黑名单来源于民间借贷、线上P2P、信用卡公司、小额借贷等公司的历史违约用户,其中很大一部分不再有借贷行为,参考价值有限。另外一个主要来源是催收公司,催收的成功率一般小于于30%(M3以上的),会产生很多黑名单。

灰名单是逾期但是还没有达到违约的客户(逾期少于3个月的客户),灰名单也还意味着多头借贷,申请人在多个贷款平台进行借贷。总借款数目远远超过其还款能力。

黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的 黑名单来提高查得率。央行和上海经信委正在联合多家互联网金融公司建立统一的黑名单平台,但是很多互联网金融公司都不太愿意贡献自家的黑名单,这些黑名单 是用真金白银换来的教训。另外如果让外界知道了自家平台黑名单的数量,会影响其公司声誉,降低公司估值,并令投资者质疑其平台的风控水平。

利用移动设备数据识别欺诈
行为数据中一个比较特殊的就是移动设备数据反欺诈,公司可以利用移动设备的位置信息来验证客户提交的工作地和生活地是否真实,另外来可以根据设备安装的应用活跃来识别多头借贷风险。

欺诈用户一般会使用模拟器进行贷款申请,移动大数据可以识别出贷款人是否使用模拟器。欺诈用户也有一些典型特征,例如很多设备聚集在一个区域,一起 申请贷款。欺诈设备不安装生活和工具用App,仅仅安装和贷款有关的App,可能还安装了一些密码破译软件或者其他的恶意软件。

欺诈用户还有可能不停更换SIM卡和手机,利用SIM卡和手机绑定时间和频次可以识别出部分欺诈用户。另外欺诈用户也会购买一些已经淘汰的手机,其机器上面的操作系统已经过时很久,所安装的App版本都很旧。这些特征可以识别出一些欺诈用户。

利用消费记录来进行评分

大会数据风控除了可以识别出坏人,还可以评估贷款人的还款能力。过去传统金融依据借款人的收入来判断其还款能力,但是有些客户拥有工资以外的收入,例如投资收入、顾问咨询收入等。另外一些客户可能从父母、伴侣、朋友那里获得其他的财政支持,拥有较高的支付能力。

按照传统金融的做法,在家不工作照顾家庭的主妇可能还款能力较弱。无法给其提供贷款,但是其丈夫收入很高,家庭日常支出由其太太做主。这种情况,就需要消费数据来证明其还款能力了。

常用的消费记录由银行卡消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。例如头等舱乘坐次数,物业费高低、高尔夫球俱乐部消费,游艇俱乐部会员费用,奢侈品会员,豪车4S店消费记录等消费数据可以作为其信用评分重要参考。

互联网金融的主要客户是屌丝,其电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。

参考社会关系来评估信用情况

物以类聚,人与群分。一般情况下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,

参考借款人常联系的朋友信用评分可以评价借款人的信用情况,一般会采用经常打电话的朋友作为样本,评估经常联系的几个人(不超过6六个人)的信用评分,去掉一个最高分,去掉一个最低分,取其中的平均值来判断借款人的信用。这种方式挑战很大,只是依靠手机号码来判断个人信用可信度不高。一般仅仅用于反欺诈识别,利用其经常通话的手机号在黑名单库里面进行匹配,如果命中,则此申请人的风险较高,需要进一步进行调查。

参考借款人社会属性和行为来评估信用

参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高,其中50岁左右的贷款人违 约率最高,30岁左右的人违约率最低。贷款用于家庭消费和教育的贷款人,其贷款违约率低;声明月收入超过3万的人比声明月收入低于1万5千的人贷款违约率 高;贷款次数多的人,其贷款违约率低于第一次贷款的人。

经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。

午夜经常上网,很晚发微博,生活不规律,经常在各个城市跑的申请人,其带贷款违约率比其他人高30%。刻意隐瞒自己过去经历和联系方式,填写简单信 息的人,比信息填写丰富的人违约概率高20%。借款时间长的人比借款时间短短人,逾期和违约概率高20%左右。拥有汽车的贷款人比没有汽车的贷款人,贷款 违约率低10%左右。

利用司法信息评估风险

涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。

寻找这些涉毒涉赌的嫌疑人,可以利用当地的公安数据,但是难度较大。也可以采用移动设备的位置信息来进行一定程度的识别。如果设备经常在半夜出现在 赌博场所或赌博区域例如澳门,其申请人涉赌的风险就较高。另外中国有些特定的地区,当地的有一部分人群从事涉赌或涉赌行业,一旦申请人填写的居住地址或者 移动设备位置信息涉及这些区域,也要引起重视。涉赌和涉毒的人员工作一般也不太稳定或者没有固定工作收入,如果申请人经常换工作或者经常在某一个阶段没有 收入,这种情况需要引起重视。涉赌和涉毒的人活动规律比较特殊,经常半夜在外面活动,另外也经常住本地宾馆,这些信息都可以参考移动大数据进行识别。

总之,互联网金融的大数据风控采用了用户社会行为和社会属性数据,在一定程度上补充了传统风控数据维度不足的缺点,能够更加全面识别出欺诈客户,评价客户的风险水平。互联网金融企业通过分析申请人的社会行为数据来控制信用风险,将资金借给合格贷款人,保证资金的安全。

⑷ 大数据适合投资学专业吗

大数据就是趋势,汽车行业这两年的进步和发展,你可以投资学习一项技术,只要想学习,什么时候都不晚

⑸ 大数据金融风控解决方案哪些公司可以提供

我们就是可以的,大数据风控即大数据风险控制,是指利用数据分析和模型进行风险评专估,为金融行业和个属人用户提供全方位的安全保障。
大数据风控流程的建立主要分为四个阶段:数据收集、数据建模、构建客户评分体系及监测分析。收集到海量数据后,需经过大量的清洗、探索与抽样,运用灵活策略来交叉匹配并综合分析,构建出客户评分体系。
基于先进的风控分析模型,以及准确、稳定、实时更新的丰富数据源,利用精密算法和灵活策略进行综合高效的监测分析,保障业务平台健康稳定运行。

⑹ 互联网金融借力大数据玩转风险控制

互联网金融借力大数据玩转风险控制
近两年,金融行业内竞争在网络平台上全面展开。大数据时代,这种竞争说到底就是“数据为王”。为什么大数据在互联网金融领域扮演着如此重要的角色?业内人士认为,“互联网+金融”具有共享性,提供了“大数据”和更充分的信息,即通过更完善的价格信号,帮助协调不同经济部门非集中化决策。
信息占据核心地位
信息占金融市场核心地位。金融市场是进行资本配置和监管的一种制度安排,而资本配置及其监管从本质上来说是信息问题。因此,金融市场即进行信息的生产、传递、扩散和利用的市场。
在“互联网+金融”时代,信息的传递和扩散更加便捷,信息的生产成本更为低廉,信息的利用渠道和方式也愈发多元化,从而越来越容易实现信息共享。这种共享不仅包含着各类不同金融机构之间的信息共享,而且包含着金融机构与其他行业之间的信息共享、金融机构和监管机构及企业间的共享等。
信息共享并由此形成的“大数据”,降低了单个金融机构获得信息、甄别信息的成本,提高了信息利用的效率,使信息的生产和传播充分而顺畅,从而极大地降低了信息的不完备和不对称程度。“大数据”不仅使投资者可以获取各种投资品种的价格及影响这些价格的因素的信息,而且筹资者也能获取不同的融资方式的成本的信息,管理部门能够获取金融交易是否正常进行、各种规则是否得到遵守的信息,使金融体系的不同参与者都能作出各自的决策。
正确看待大数据征信
互联网金融的发展带火了P2P市场,也折射出风控体系建设的缺失。P2P跑路现象主要原因就是风控缺失,体现在“重担保、轻风控”和“重线上风控、轻线下调查”。
当前,多数P2P平台“重担保、轻风控”的思路是不正确的,担保是外界因素,风控是内在因素,一味强调用外在的因素而不解决自身的问题,不可能实现良好运转。互联网金融的风险管理不在规则之中,而在互联网和金融双重叠加的对象之中,其最基本的风险边界应是保证投资者的资产安全。守住了安全底线,这些平台才能健康成长。所以,P2P平台根本的安全底线还在于加强自身对象的风控。
另一方面,风控分为贷前、贷中、贷后风控。目前有些P2P平台从最开始的贷前风控就缺失,贷前风控最重要的是要实现“线下调查”,即通过线下实地走访和考察,对客户信息进行交叉验证和真实性验证,包括对借款人银行流水、征信报告、财产证明、工作证明等的审查,通过审查评估借款人还款能力。这些线下风控是不可或缺的,不能迷信或过分夸大“互联网+”的效率和普惠,线上的大数据和线下的实地考察必须结合。
基于大数据、个人征信的风控手段已有很多,大数据征信是实现P2P风控的创新路径。但是也需要正确看待,既不能要求大数据征信一步登天,一下子带来质的改变;也不能风声鹤唳,一有创新就以各种名义围追堵截,而需要给予更多理性的包容和试错的空间,在渐进创新中不断完善大数据征信体系。
目前存在的困难:
一是数据的虚拟性和“信息噪音”。虽然大数据及其分析提高了信息获取的数量和精度,但由于虚拟世界中信息大爆炸造成的“信息噪音”,导致交易者身份、交易真实性、信用评价的验证难度更大,反而可能在另一层面更强化信息不对称程度,也更容易存在信息垄断。
二是信用数据关联的不确定性。信用数据是多样化的,包括朋友信用、爱情信用、事业信用等。所谓忠孝不能两全,一个对朋友忠诚的人不一定对事业忠诚。对事业或工作忠诚,也不一定能说明他的金融信用好。大数据通过日常信用来判断金融信用会出现偏差。
三是“数据孤岛”不能实现数据共享。互联网平台具有强烈的规模效应,平台越大越容易产生数据,越容易使用数据。例如,阿里小贷主要通过卖家累计的海量交易信息及资金流水,也可通过大数据的分析在几秒内完成对商家的授信。但是,阿里小贷的数据,不可能提供给其他公司使用。因此,下一步应推动数据的整合和共享。
玩转大数据风控系统
传统的风控模式更多关注的是静态风险,对风险进行预判。而P2P市场让越来越多的传统金融企业转型互联网金融,大数据技术要对风险进行实时把握,要做到两点:大数据和云计算结合以及大数据的流处理模式。
大数据和云计算结合,实现了实时监控。云计算为大数据实时把握提供了硬件基础,可以实现秒级的数据采集、分析和挖掘。流处理模式实现了静态风险和动态风险的有效结合。一种人习惯先把信息存下来,然后一次性地处理掉,也叫批处理,如定期处理过期邮件;另一种人喜欢信息来一点处理一点,无用信息直接过滤掉,有用的存起来。后者就是流处理的基本范式,实现了实时监控。
怎样才能针对企业自身的发展和业务方向,玩转大数据风控系统,使其发挥到最大作用?我认为,要关注“大众数据”。要意识到互联网“长尾效应”的作用,互联网环境下“得大众者得天下”,关注大众数据,要了解大众心态,在归属感、成就感和参与感上下功夫。
还要将业务驱动转向数据驱动。理解数据的价值,通过数据处理创造商业价值,看似零散的数据背后寻找消费逻辑。此外,还应改造公司数据相关的IT部门,将其从“成本中心”转化为“利润中心”,充分认识大数据是核心竞争力,重视其挖掘和预测的能力。
当然,实时大数据风控还需要很多方面的探索,如何借助大数据建立全生命风控体系,形成贷前、贷中、贷后流程管理系统和决策系统。另外,还需加强信用数据相关性研究和量化模型的开发,金融信用(主要指借贷数据)可获得性比日常信用数据难,以金融信用为中心,通过日常信用,构建个人信用评估体系。

⑺ 大数据对投资管理的影响

正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就
是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势
一方面,
金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;
另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。

总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展
带来重要机遇。

首先,
大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境
下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。

其次,
大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。
此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,
大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业
务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。
目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、
纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。
一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。

阅读全文

与大数据风险投资相关的资料

热点内容
建设银行抵押贷款流程 浏览:996
融和融资租赁公司 浏览:478
蓝港融资 浏览:189
有赞被融资 浏览:975
沉重的贷款 浏览:540
360贷款申请如何取消吗 浏览:356
信托公司被接管后的影响 浏览:773
神州租车融资 浏览:332
融资租赁每期租金 浏览:583
融资租赁合同合同法 浏览:69
创业融资百科 浏览:917
2015年外汇平台排名 浏览:789
项目融资样卷 浏览:670
融资租赁内部收益率 浏览:641
融资对接 浏览:124
融资股权比例 浏览:715
合买信托 浏览:668
融资管理再创 浏览:589
1051美元换人民币多少元 浏览:918
股市安信信托 浏览:401