導航:首頁 > 基金投資 > 量化投資原理

量化投資原理

發布時間:2021-07-03 14:37:34

Ⅰ 量化投資,如何量化呢

量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
1·量化選股

量化選股就是採用數量的方法判斷某個公司是否值得買入的行為。根據某個方法,如果該公司滿足了該方法的條件,則放入股票池,如果不滿足,則從股票池中剔除。量化選股的方法有很多種,總的來說,可以分為公司估值法、趨勢法和資金法三大類
2·量化擇時

股市的可預測性問題與有效市場假說密切相關。如果有效市場理論或有效市場假說成立,股票價格充分反映了所有相關的信息,價格變化服從隨機遊走,股票價格的預測則毫無意義。眾多的研究發現我國股市的指數收益中,存在經典線性相關之外的非線性相關,從而拒絕了隨機遊走的假設,指出股價的波動不是完全隨機的,它貌似隨機、雜亂,但在其復雜表面的背後,卻隱藏著確定性的機制,因此存在可預測成分。
3·股指期貨

股指期貨套利是指利用股指期貨市場存在的不合理價格,同時參與股指期貨與股票現貨市場交易,或者同時進行不同期限,不同(但相近)類別股票指數合約交易,以賺取差價的行為,股指期貨套利主要分為期現套利和跨期套利兩種。股指期貨套利的研究主要包括現貨構建、套利定價、保證金管理、沖擊成本、成分股調整等內容。
4·商品期貨

商品期貨套利盈利的邏輯原理是基於以下幾個方面 :
(1)相關商品在不同地點、不同時間對應都有一個合理的價格差價。
(2)由於價格的波動性,價格差價經常出現不合理。
(3)不合理必然要回到合理。
(4)不合理回到合理的這部分價格區間就是盈利區間。
5·統計套利

有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。統計套利在方法上可以分為兩類,一類是利用股票的收益率序列建模,目標是在組合的β值等於零的前提下實現alpha 收益,我們稱之為β中性策略;另一類是利用股票的價格序列的協整關系建模,我們稱之為協整策略。
6·期權套利

期權套利交易是指同時買進賣出同一相關期貨但不同敲定價格或不同到期月份的看漲或看跌期權合約,希望在日後對沖交易部位或履約時獲利的交易。期權套利的交易策略和方式多種多樣,是多種相關期權交易的組合,具體包括:水平套利、垂直套利、轉換套利、反向轉換套利、跨式套利、蝶式套利、飛鷹式套利等。
7·演算法交易

演算法交易又被稱為自動交易、黑盒交易或者機器交易,它指的是通過使用計算機程序來發出交易指令。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格、甚至可以包括最後需要成交的證券數量。根據各個演算法交易中演算法的主動程度不同,可以把不同演算法交易分為被動型演算法交易、主動型演算法交易、綜合型演算法交易三大類。
8·資產配置

資產配置是指資產類別選擇,投資組合中各類資產的適當配置以及對這些混合資產進行實時管理。量化投資管理將傳統投資組合理論與量化分析技術的結合,極大地豐富了資產配置的內涵,形成了現代資產配置理論的基本框架。
它突破了傳統積極型投資和指數型投資的局限,將投資方法建立在對各種資產類股票公開數據的統計分析上,通過比較不同資產類的統計特徵,建立數學模型,進而確定組合資產的配置目標和分配比例。

Ⅱ 完全不懂金融,想學習量化投資需要學習哪些金融科目

我個人認為學抄習量化投資在金融襲方面需要具備兩個方面的知識:
1、首先是要了解金融市場與金融產品,只有這樣才能在眾多市場與標的中選擇合適的來構建投資組合,這一方面需要了解的基礎知識有:金融市場與金融機構、投資學、金融衍生品等等;
2、其次是需要了解如何量化,相信你應該有足夠的IT背景,編程沒啥問題,其次的話就是要了解數理來溝通金融產品選擇與編程落地,需要了解的科目有:概率論、統計學、計量經濟學、金融經濟學、數理金融等。

Ⅲ 什麼是量化交易

量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷內史數據中海選能帶來超額收益的多容種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

Ⅳ AIQT量化交易系統的原理有人知道嗎

當然知道,這是一個現在被應用的十分廣泛的一個量化交易系統,它分為交易套利、可視化控制項、刺激交易、策略介面與託管等功能。

Ⅳ 量化投資—策略與技術的本書特色

第一,實戰性。書中的案例絕大多數來自於實際的市場數據,只有很少一部分是純理論的分析。尤其是策略篇中的內容大部分來自於專業投資機構的研究報告,具有極強的實戰價值。
第二,基於中國市場。與量化投資最接近的書籍當屬「金融工程」,但金融工程中絕大多數的案例都來自於國外市場,很多策略在國內市場還不具備投資條件。本書中的案例基本上都是對國內市場(股票、期貨等)中的實際交易數據的分析,特別適合國內的投資者。
第三,理論性。量化投資離不開最新的數學和計算機理論的支持,本書用了將近一半的篇幅來闡述與量化投資有關的基礎理論,並用了很多案例來說明這些理論的應用方法。避免了一般投資策略書籍重技術而忽視理論的缺點,從而使量化投資更加科學化。
本書主要內容
本書的內容分為:策略篇和理論篇。策略篇中闡述了各種量化投資的策略與方法,理論篇則詳細介紹了支持量化投資的各種數學工具。
策略篇一共介紹了8個方面的投資策略,分別是量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、期權套利、演算法交易及其他策略。
投資策略 概述
量化選股 量化投資最重要的策略,主要是研究如何利用各種方法選出最佳的股票組合,使得該股票組合的收益率盡可能高的同時,保持盡可能的穩定性。量化選股一章闡述了8種不同角度的策略,分別為多因子模型、風格輪動模型、行業輪動模型、資金流模型、動量反轉模型、一致預期模型、趨勢追蹤模型和籌碼選股模型
量化擇時 量化投資中最難的,也是收益率最高的一種策略,主要研究大盤及個股走勢,並進行相應的高拋低吸操作。如果能夠正確判斷大盤,則收益率會比單純的買入-持有策略收益要高很多。這一章主要闡述了8種擇時模型,分別是趨勢擇時、市場情緒擇時、有效資金模型、牛熊線模型、Hurst指數模型、SVM模型、SWARCH模型和異常指標擇時

Ⅵ 解讀量化投資怎麼樣

最牛對沖基金經理西蒙斯的大名我是在一兩年前聽過的吧,很厲害的業績,又很神秘,西蒙斯有多神奇呢,如果他不收你任何手續費,你投1萬元在20年的時間里就可以變1億。當然讀完這本書,西蒙斯還是非常神秘,該書大致介紹了這幾個方面,西蒙斯的生平,文藝技術公司的的情況,大獎章基金的可能的操作手法,量化投資的歷史與淵源。 先說說,這個作者忻海,我覺得很牛B,當然再讀該書前半本時,我也就覺得得該書一般般,東拉西扯,經常游離西蒙斯這個主題去介紹長期資本管理公司等別的主題。不過看到後半部分,尤其以第4、5、6章為全書精華,我還是相當佩服作者的,因為這本書基本是他讀關於西蒙斯的新聞然後寫出來的,從西蒙斯或者其同事的只言片語推斷出關於大獎章基金的種種情況。這本書充分反映了作者知識的淵博,強大的google搜索能力還有就是推測能力。 這本書推測了西蒙斯的策略是屬於量化的技術投資派,西蒙斯進行的是大量超短線交易,交易時間可以短到千分之一秒,他有很多種策略,利用了人類心理情緒和反應滯後,而且他還在不停的開發新策略和新模型來戰勝市場。最令我感到神奇的地方時作者提到的將生物學上的遺傳編程的思想運用到了投資模型的開發上。先選出一些技術類的指標,利用電腦隨機生成不同的參數,看歷史上哪些參數、哪些指標最適用的,再將指標與指標之間組合雜交,然後又再用電腦再隨機生成關於這組指標的種種參數,看哪些參數的指標組合盈利能力最穩定,就這樣通過一輪又一輪的不斷雜交篩選,最終剩下來的就是歷史上盈利能力最強的投資模型。而這個模型可能人能夠解釋出來,也可能人根本就不知道為什麼是這樣組合的。 書里提到過基本上所有理工科能用到的工具都已經在投資模型上試過了,比如:模糊邏輯、神經網路、基因編程、隱含馬爾可夫模型、小波變換、貝葉斯網路、分型幾何、聚類分析。 我想如果我有天分的話又有時間的話,以上這些方面的知識將是我遠期想要了解的。呵呵,還好西蒙斯四十歲才開始投資,不然世界上的錢都被他賺完了。 再談下我對對沖基金的看法,雖然對沖基金能夠令市場更有效率,但都是在比較細小的無效的地方起作用,而且利用的原理大多是相對的估值方法,即一個價格貴了或者便宜了,另外一個相關聯的價格也要做出反應,無法確認某個價格從長遠上看是否是合理的。從這一點上看,對沖基金是在為市場的細微之處做有效定價,而以巴菲特為首的價值投資人是站在宏觀和長遠的角度上讓市場更加有效率,兩者各賺各自的錢。

Ⅶ 量化投資和技術分析有什麼區別

Ⅷ 「量化高頻交易」是怎樣的一種概念如何去簡單理解這個交易技術

#銀心分享#量化投資是通過綜合運用金融、數學和計算機知識,發現市場規律、尋找大概率內事件,發現容投資機會。 「量化投資簡單地說,就是先通過電腦來計算:時間、價格、經濟指標、市場消息等,當它們達到模型要求時,就自動買賣。」計算機根據每秒數次更新的報價不停計算,確定要不要加倉、減倉,算算用了多少錢,賺了還是虧了,賺了多少或者虧了多少。 以量化投資裡面具有代表性的一種模式———統計套利為例:成都市兩大菜市場都在賣大白菜,實時監控兩個市場的價格,如果發現一個市場大白菜價格為八毛一斤,另一個市場大白菜價格為七毛一斤,兩個市場之間的運費是每斤五分,這個時候我就可以在一個市場買入大白菜,拿到另外一個市場去賣掉,每一斤可以賺到五分錢,如果規模大,一天很多次這樣做生意,那麼累計的利潤就很可觀。「這就是統計套利基本原理的簡化案例。」他說。

Ⅸ 量化投資的主要方法和前沿進展

量化投資是通過計算機對金融大數據進行量化分析的基礎上產生交易決策機制。設計金融數學和計算機的知識和技術,主要有人工智慧、數據挖掘、小波分析、支持向量機、分形理論和隨機過程這幾種。
1.人工智慧
人工智慧(Artificial Intelligence,AI)是研究使用計算機來模擬人的某些思維過程和智能行為(如學習、推理、思考、規劃等)的學科,主要包括計算機實現智能的原理、製造類似於人腦智能的計算機,使計算機能實現更高層次的應用。人工智慧將涉及計算機科學、心理學、哲學和語言學等學科,可以說幾乎是自然科學和社會科學的所有學科,其范圍已遠遠超出了計算機科學的范疇,人工智慧與思維科學的關系是實踐和理論的關系,人工智慧是處於思維科學的技術應用層次,是它的一個應用分支。
從思維觀點看,人工智慧不僅限於邏輯思維,還要考慮形象思維、靈感思維才能促進人工智慧的突破性發展,數學常被認為是多種學科的基礎科學,因此人工智慧學科也必須借用數學工具。數學不僅在標准邏輯、模糊數學等范圍發揮作用,進入人工智慧學科後也能促進其得到更快的發展。
金融投資是一項復雜的、綜合了各種知識與技術的學科,對智能的要求非常高。所以人工智慧的很多技術可以用於量化投資分析中,包括專家系統、機器學習、神經網路、遺傳演算法等。
2.數據挖掘
數據挖掘(Data Mining)是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的,但又是潛在有用的信息和知識的過程。
與數據挖掘相近的同義詞有數據融合、數據分析和決策支持等。在量化投資中,數據挖掘的主要技術包括關聯分析、分類/預測、聚類分析等。
關聯分析是研究兩個或兩個以上變數的取值之間存在某種規律性。例如,研究股票的某些因子發生變化後,對未來一段時間股價之間的關聯關系。關聯分為簡單關聯、時序關聯和因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。一般用支持度和可信度兩個閾值來度量關聯規則的相關性,還不斷引入興趣度、相關性等參數,使得所挖掘的規則更符合需求。
分類就是找出一個類別的概念描述,它代表了這類數據的整體信息,即該類的內涵描述,並用這種描述來構造模型,一般用規則或決策樹模式表示。分類是利用訓練數據集通過一定的演算法而求得分類規則。分類可被用於規則描述和預測。
預測是利用歷史數據找出變化規律,建立模型,並由此模型對未來數據的種類及特徵進行預測。預測關心的是精度和不確定性,通常用預測方差來度量。
聚類就是利用數據的相似性判斷出數據的聚合程度,使得同一個類別中的數據盡可能相似,不同類別的數據盡可能相異。
3.小波分析
小波(Wavelet)這一術語,顧名思義,小波就是小的波形。所謂「小」是指它具有衰減性;而稱之為「波」則是指它的波動性,其振幅正負相間的震盪形式。與傅里葉變換相比,小波變換是時間(空間)頻率的局部化分析,它通過伸縮平移運算對信號(函數)逐步進行多尺度細化,最終達到高頻處時間細分,低頻處頻率細分,能自動適應時頻信號分析的要求,從而可聚焦到信號的任意細節,解決了傅里葉變換的困難問題,成為繼傅里葉變換以來在科學方法上的重大突破,因此也有人把小波變換稱為數學顯微鏡。
小波分析在量化投資中的主要作用是進行波形處理。任何投資品種的走勢都可以看做是一種波形,其中包含了很多噪音信號。利用小波分析,可以進行波形的去噪、重構、診斷、識別等,從而實現對未來走勢的判斷。
4.支持向量機
支持向量機(Support Vector Machine,SVM)方法是通過一個非線性映射,把樣本空間映射到一個高維乃至無窮維的特徵空間中(Hilbert空間),使得在原來的樣本空間中非線性可分的問題轉化為在特徵空間中的線性可分的問題,簡單地說,就是升維和線性化。升維就是把樣本向高維空間做映射,一般情況下這會增加計算的復雜性,甚至會引起維數災難,因而人們很少問津。但是作為分類、回歸等問題來說,很可能在低維樣本空間無法線性處理的樣本集,在高維特徵空間中卻可以通過一個線性超平面實現線性劃分(或回歸)。
一般的升維都會帶來計算的復雜化,SVM方法巧妙地解決了這個難題:應用核函數的展開定理,就不需要知道非線性映射的顯式表達式;由於是在高維特徵空間中建立線性學習機,所以與線性模型相比,不但幾乎不增加計算的復雜性,而且在某種程度上避免了維數災難。這一切要歸功於核函數的展開和計算理論。
正因為有這個優勢,使得SVM特別適合於進行有關分類和預測問題的處理,這就使得它在量化投資中有了很大的用武之地。
5.分形理論
被譽為大自然的幾何學的分形理論(Fractal),是現代數學的一個新分支,但其本質卻是一種新的世界觀和方法論。它與動力系統的混沌理論交叉結合,相輔相成。它承認世界的局部可能在一定條件下,在某一方面(形態、結構、信息、功能、時間、能量等)表現出與整體的相似性,它承認空間維數的變化既可以是離散的也可以是連續的,因而極大地拓展了研究視野。
自相似原則和迭代生成原則是分形理論的重要原則。它表示分形在通常的幾何變換下具有不變性,即標度無關性。分形形體中的自相似性可以是完全相同的,也可以是統計意義上的相似。迭代生成原則是指可以從局部的分形通過某種遞歸方法生成更大的整體圖形。
分形理論既是非線性科學的前沿和重要分支,又是一門新興的橫斷學科。作為一種方法論和認識論,其啟示是多方面的:一是分形整體與局部形態的相似,啟發人們通過認識部分來認識整體,從有限中認識無限;二是分形揭示了介於整體與部分、有序與無序、復雜與簡單之間的新形態、新秩序;三是分形從一特定層面揭示了世界普遍聯系和統一的圖景。
由於這種特徵,使得分形理論在量化投資中得到了廣泛的應用,主要可以用於金融時序數列的分解與重構,並在此基礎上進行數列的預測。
6.隨機過程
隨機過程(Stochastic Process)是一連串隨機事件動態關系的定量描述。隨機過程論與其他數學分支如位勢論、微分方程、力學及復變函數論等有密切的聯系,是在自然科學、工程科學及社會科學各領域中研究隨機現象的重要工具。隨機過程論目前已得到廣泛的應用,在諸如天氣預報、統計物理、天體物理、運籌決策、經濟數學、安全科學、人口理論、可靠性及計算機科學等很多領域都要經常用到隨機過程的理論來建立數學模型。
研究隨機過程的方法多種多樣,主要可以分為兩大類:一類是概率方法,其中用到軌道性質、隨機微分方程等;另一類是分析的方法,其中用到測度論、微分方程、半群理論、函數堆和希爾伯特空間等,實際研究中常常兩種方法並用。另外組合方法和代數方法在某些特殊隨機過程的研究中也有一定作用。研究的主要內容有:多指標隨機過程、無窮質點與馬爾科夫過程、概率與位勢及各種特殊過程的專題討論等。
其中,馬爾科夫過程很適於金融時序數列的預測,是在量化投資中的典型應用。
現階段量化投資在基金投資方面使用的比較多,也有部分投資機構合券商的交易系統應用了智能選股的技術。

Ⅹ 量化分析的量化投資策略

量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。
1·量化選股
量化選股就是採用數量的方法判斷某個公司是否值得買入的行為。根據某個方法,如果該公司滿足了該方法的條件,則放入股票池,如果不滿足,則從股票池中剔除。量化選股的方法有很多種,總的來說,可以分為公司估值法、趨勢法和資金法三大類
2·量化擇時
股市的可預測性問題與有效市場假說密切相關。如果有效市場理論或有效市場假說成立,股票價格充分反映了所有相關的信息,價格變化服從隨機遊走,股票價格的預測則毫無意義。眾多的研究發現我國股市的指數收益中,存在經典線性相關之外的非線性相關,從而拒絕了隨機遊走的假設,指出股價的波動不是完全隨機的,它貌似隨機、雜亂,但在其復雜表面的背後,卻隱藏著確定性的機制,因此存在可預測成分。
3·股指期貨套利
股指期貨套利是指利用股指期貨市場存在的不合理價格,同時參與股指期貨與股票現貨市場交易,或者同時進行不同期限,不同(但相近)類別股票指數合約交易,以賺取差價的行為,股指期貨套利主要分為期現套利和跨期套利兩種。股指期貨套利的研究主要包括現貨構建、套利定價、保證金管理、沖擊成本、成分股調整等內容。
4·商品期貨套利
商品期貨套利盈利的邏輯原理是基於以下幾個方面 :(1)相關商品在不同地點、不同時間對應都有一個合理的價格差價。(2)由於價格的波動性,價格差價經常出現不合理。(3)不合理必然要回到合理。(4)不合理回到合理的這部分價格區間就是盈利區間。
5·統計套利
有別於無風險套利,統計套利是利用證券價格的歷史統計規律進行套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。統計套利在方法上可以分為兩類,一類是利用股票的收益率序列建模,目標是在組合的β值等於零的前提下實現alpha 收益,我們稱之為β中性策略;另一類是利用股票的價格序列的協整關系建模,我們稱之為協整策略。
6·期權套利
期權套利交易是指同時買進賣出同一相關期貨但不同敲定價格或不同到期月份的看漲或看跌期權合約,希望在日後對沖交易部位或履約時獲利的交易。期權套利的交易策略和方式多種多樣,是多種相關期權交易的組合,具體包括:水平套利、垂直套利、轉換套利、反向轉換套利、跨式套利、蝶式套利、飛鷹式套利等。
7·演算法交易
演算法交易又被稱為自動交易、黑盒交易或者機器交易,它指的是通過使用計算機程序來發出交易指令。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格、甚至可以包括最後需要成交的證券數量。根據各個演算法交易中演算法的主動程度不同,可以把不同演算法交易分為被動型演算法交易、主動型演算法交易、綜合型演算法交易三大類。
8·資產配置
資產配置是指資產類別選擇,投資組合中各類資產的適當配置以及對這些混合資產進行實時管理。量化投資管理將傳統投資組合理論與量化分析技術的結合,極大地豐富了資產配置的內涵,形成了現代資產配置理論的基本框架。它突破了傳統積極型投資和指數型投資的局限,將投資方法建立在對各種資產類股票公開數據的統計分析上,通過比較不同資產類的統計特徵,建立數學模型,進而確定組合資產的配置目標和分配比例。

閱讀全文

與量化投資原理相關的資料

熱點內容
中國的外匯公司 瀏覽:981
基金投資合作協議 瀏覽:424
建行家族信託 瀏覽:922
瀘州老窖悅壇52度價格 瀏覽:378
銷售合同抵押貸款 瀏覽:5
貸款逾期看不懂 瀏覽:27
貴州私募基金公司有哪些 瀏覽:185
烏霍夫股票 瀏覽:812
2009年外匯儲備 瀏覽:601
硅鐵的股票 瀏覽:138
外匯策略書籍 瀏覽:734
外匯期貨平台交易 瀏覽:306
博金集團外匯 瀏覽:75
印度盧比等於多少人民幣多少 瀏覽:635
基金股票信託 瀏覽:877
基金會注冊財務 瀏覽:578
職業年金基金受託人評選辦法 瀏覽:820
平安信託輿情 瀏覽:278
西部信託王珂 瀏覽:57
累紋鋼價格多少一噸 瀏覽:247